Bài giảng Điều khiển số (Digital Control Systems)

pdf 116 trang hapham 4700
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Điều khiển số (Digital Control Systems)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbai_giang_dieu_khien_so_digital_control_systems.pdf

Nội dung text: Bài giảng Điều khiển số (Digital Control Systems)

  1. Điềukhiểnsố (Digital Control Systems) PhầnA: Môn họctruyền đạtcáckiếnthứcphụcvụ phân tích, thiếtkế các hệ thống điều khiểntựđộng sử dụng vi xử lý (μP, μC, DSP). PhầnA baogồm các nội dung thuộcchương trình dành cho Đạihọc. (Version 6, 8/2011) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 1 Electrical Engineering - Automatic Control
  2. Điềukhiểnsố Chương 1: Mô hình tín hiệuvàhệ thống 1. Cấutrúccơ sở củahệ thống ĐK số 2. Mô hình tín hiệutrênmiền ảnh z 3. Mô hình hệ thống trên miền ảnh z Chương 2: Điềukhiểncóphảnhồi đầura 1. Xét ổn định củahệ thống số 2. Thiếtkế trên miềnthờigianxấpxỉ liên tục 3. Thiếtkế trên miềnthời gian gián đoạn 4. Mộtsố dạng mở rộng 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 2 Electrical Engineering - Automatic Control
  3. Điềukhiểnsố Chương 3: Điềukhiểncóphảnhồitrạng thái 1. Ôn lạicáckiếnthứccơ sở 2. Mô hình trạng thái gián đoạn 3. Tính ĐK được, QS được và các dạng chuẩn 4. Cấu trúc cơ bảncủahệ thống ĐK số trên không gian trạng thái 5. Mộtsố dạng mở rộng Chương 4: Thực hiện kỹ thuậthệ thống ĐK số 1. Ảnh hưởng của số hóa (lượng tử hóa) biên độ 2. Thiếtkế hệ thống bằng máy tính (MATLAB) 3. Thiếtkế hệ thống vi điều khiển 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 3 Electrical Engineering - Automatic Control
  4. Điềukhiểnsố Tài liệuthamkhảo: [1] Isermann R.: Digitale Regelsysteme. Bd. I und II, Springer-Verlag, 2. Auflage, 1987-1988 [2] Franklin G.F., Powell J.D., Workman M.L.: Digital Control of Dynamic Systems. Addison Wesley, 2nd 1994 [3] Quang Ng.Ph.: MATLAB & Simulink dành cho kỹ sưđiềukhiểntựđộng. Nhà xuấtbản KH&KT, 2004 [4] Quang Ng.Ph., Dittrich A.-J.: Vector Control of Three-Phase AC Machines. Springer, Berlin – Heidelberg, 2008 Chú ý: Giáo trình này sử dụng để dậycáclớp đạihọcvớithời lượng 45 tiết, bao gồm lý thuyếtvàvídụ. Với các lớp 60 tiết, sẽ dậygiống như lớp 45 tiếtnhưng có thêm bài tậplớn 12-15 tiết. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 4 Electrical Engineering - Automatic Control
  5. 1. Mô hình tín hiệuvàhệ thống 1.1 Cấutrúccơ sở củahệ thống ĐK số Khâu Điềuchỉnh: 1. Pt. Sai phân puμμkkk−−++ pu11 + pu 0 = qe011kk+++ qe−− qeνν k −1 qqz+++−−1 qzν Qz( ) 2. Hàm truyền đạttrên Gz==01 ν ÐC () −−1 μ −1 ppz01+++ pzμ P(z ) miền ảnh z 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 5 Electrical Engineering - Automatic Control
  6. 1. Mô hình tín hiệuvàhệ thống 1.1 Cấutrúccơ sở củahệ thống ĐK số •Khâu ĐC: sử dụng vi xử lý (microprocessor: μP), vi điềukhiển (microcontroller: μC) hoặc vi xử lý tín hiệu (digital signal processor: DSP) • Khâu DAC: có thể không tồntạimộtcáchtường minh, mà ẩndướidạng thiếtbị có chứcnăng DA. Ví dụ: khâu điềuchế vector điệnáp(khi điều khiển digital động cơ ba pha) • Khâu ADC: thường sử dụng khi đo đạc giá trị thựccủa đạilượng ra (ví dụ: đo dòng). Đôi khi tồn tạidướidạng khác như: đotốc độ quay bằng IE 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 6 Electrical Engineering - Automatic Control
  7. 1. Mô hình tín hiệuvàhệ thống 1.1 Cấutrúccơ sở củahệ thống ĐK số Khâu ADC và quá trình trích mẫu đo Sau khi trích mẫu(lýtưởng) Để khảosáttínhiệugiánđoạn ∞ bằng ADC ta thu được chuỗi * ⎡ ⎤ bằng công cụ Laplace (hay ut()=−∑ ⎣ ukTt ( )δ ( kT )⎦ giá trị số: phân tích phổ), đồng thờitạo k=0 ⎡ ⎤⎡ ⎤ điềukiệnmôtả hỗnhợpvới các ∞ ⎣⎦⎣uk()= u ()0, u () 1, u () 2, ⎦ hay =−utδ t kT khâu liên tục, ta nhân chuỗivới ()∑ ( ) uuuu= ,,, k=0 [ k ] [ 012 ] hàm δ(t) và thu được dãy xung: 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 7 Electrical Engineering - Automatic Control
  8. 1. Mô hình tín hiệuvàhệ thống 1.1 Cấutrúccơ sở củahệ thống ĐK số Khâu DAC và quá trình lưugiữ (nhớ) khi xuất −sT ∞ 1−e −skT Mô hình tín hiệucódạng bậcthangtrên Us()= ∑ uek miềnthờigian: s k=0 ∞ Từđóthuđượchàmtruyền đạtcủa khâu =−−−+⎡ ⎤ ut()∑ uk {}111 ( t kT )⎣ t ( k ) T⎦ giữ chậm: k=0 Us( ) 1−e−sT == Chuyển sang miền ảnh Laplace: GsH () * Us( ) s 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 8 Electrical Engineering - Automatic Control
  9. 1. Mô hình tín hiệuvàhệ thống 1.2 Mô hình tín hiệutrênmiền ảnh z Chuyểnphương trình mô tả dãy xung u*(t) sang miền ảnh Laplace: ∞∞ ut =−⇒=⎡⎤ ukTtδ kT U s⎡ ue−skT ⎤ ()∑∑⎣⎦ ( ) ( ) () ⎣⎢ k ⎦⎥ kk==00 ∞ sT * ⎡ −k ⎤ Thay: z = e ta thu được: Us()sT == Uz() uzk ez= ∑ ⎣⎢ ⎦⎥ k=0 Ví dụ: Một tín hiệugiánđoạnvề thờigianchotrướcbởi ⎪⎧00k < u = ⎨⎪ k ⎪ k ⎩⎪ak≥ 0 Ảnh z củatínhiệukể trên: k ∞∞⎛⎞a Uz== azkk− ⎜ ⎟ () ∑∑()⎜ ⎟ kk==00⎝⎠z Chuỗitrênchỉ hộitụ khiaz<1 , tứclàở vùng phía ngoài đường tròn có bán kính a → vai trò quan trọng củaTđối với ổn định củahệ thống. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 9 Electrical Engineering - Automatic Control
  10. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z Hệ thống ĐK số bao gồm 2 loạikhâucơ bản: 1. Khâu có bảnchấtgián đoạn: Các tín hiệuvào/ra/ trạng thái đềugiánđoạn về thờigianvàvề mức. Khâu mô tả các thiếtbị ĐK digital. 2. Khâu có bảnchấtliên tục: Mô tả đốitượng điều khiển. Khi gián đoạn hóa sẽđưa đếnmôhìnhnhư hình bên. Việcgiánđoạn hóa xuất phát từ mô hình trạng thái liên tụccủa đối tượng. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 10 Electrical Engineering - Automatic Control
  11. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.1 Mô hình khâu có bảnchấtgiánđoạn Quy luật tính toán (đượcgọilàthuật toán) xác định đặc tính truyền đạtcủa khâu. a) Mô tả bằng phương trình sai phân *Sai phân bậc n: nn−−11 n *Sai phân bậcnhất: Δ=Δ−Δuukk+1 u k n ⎡ ⎛⎞ ⎤ ⎢ n ⎜n⎟ ⎥ Sai phân tiến: Δ=uukk+1 − u k =−()1 ⎜ ⎟u ∑ ⎢ ⎜ ⎟ kn+−ν ⎥ ν=0 ⎣⎢ ⎝⎠ν ⎦⎥ Sai phân lùi Δ=−uuukkk−1 Mộtphương trình sai phân có ít nhất2 giá *Sai phân bậc2: 2 Δ=Δ−Δuukk+1 u k trị uk+n và uk đượcgọilàphương trình sai phân bậcn. =−uuukkk++212 + 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 11 Electrical Engineering - Automatic Control
  12. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.1 Mô hình khâu có bảnchấtgiánđoạn a) Mô tả bằng phương trình sai phân *Pt. sai phân bậc n sử dụng sai phân tiến: ax011011kn+−++++ a n x k + ax nk = bu km ++ b m −+ u k + bu mk *Pt. sai phân bậc n sử dụng sai phân lùi: ax011kk+++=+++ ax−− ax nknkk bu 011 bu −− bu mkm Giảipt. saiphânbằng phương pháp tính truy hồi (recursive method) Giả sử ta xuấtpháttừ pt. sai phân lùi với a0=1 xbubukkk=+011−−−−− ++− buaxax mkmk 1122 − k −− ax nkn Quá trình tính xk đượcbắt đầutừ k=0, lầnlượtnângthêm1: kxbu=⇒0 000 = kxbubuax=⇒1 1011010 = + − 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 12 Electrical Engineering - Automatic Control
  13. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.1 Mô hình khâu có bảnchấtgiánđoạn a) Mô tả bằng phương trình sai phân Giảipt. saiphântrên miền ảnh z * Bước 1: Chuyển đồng thời2 vế của pt. sai phân sang miền ảnh z: Ζ+++=Ζ+++{ax0110kn+−+ a n x k ax nk} { bu km + b m −+ 11 u k bu mk} * Bước2: Giả thiếtcácgiátrị ban đầu x0, x1, , u0, u1, bằng 0, ta có: mm−1 bz01+++ bz bm X ()zUz= nn−1 () az01+++ az an * Bước3: Ápdụng biến đổingược để tìm xk Chú ý: Có thể giảipt. saiphântrênmiền ảnh z, xuấtpháttừ pt. sai phân tiến hoặc lùi, kếtquả thu đượcbaogiờ cũng là duy nhất. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 13 Electrical Engineering - Automatic Control
  14. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.1 Mô hình khâu có bảnchấtgiánđoạn b) Mô tả bằng hàm truyền đạttrênmiền ảnh z Chú ý: Trên cơ sở các phương trình vector sai Với: Xz( ) =Ζ{} xkk; Uz( ) =Ζ{} u phân, có thể mô tả khâu là ảnh z củachuỗi giá trị (tín hiệudigital) đầura/ đầuvào, tasẽ có truyền đạtgiánđoạn nhiều hàm truyền đạtsau: −−1 m Xz( ) bbz01+++ bzm chiềutuyếntínhbởi: Gz()==−−1 n ; m = n Uz( ) aaz01+++ azn XGU(z) = (zz) ( ) Tương tự hệ liên tục, hàm truyền đạt G(z) có thểđượccoilàảnh z củahàmtrọng lượng gián đoạn[g ] (chuỗitrọng lượng). Vậy: Trong đó G(z) là ma trận k k −1 truyền đạtgiánđoạn. gGzxgukkkii=Ζ{}() ⇒ =∑ − i=0 −4 xgg=+ + g +++ gg Xz( ) 11− z k k kkk−−12 k 10 Ví dụ:KhiGz()== u =1 ta có: xg==0, 25 Uz() 4 1− z−1 00 xgg110=+=0,5 ⎧⎫ 11−−−144⎪⎪zz kk xggg=++=0,75 ⇒=Ζgz⎨⎬ − =11 − 2210 k ⎪⎪() 4114⎩⎭⎪⎪zz−− xgggg33210=+++=1 xggggg=++++=1 ⇒=[]g 1111, , , ,0,0, 443210 k ( 4444 ) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 14 Electrical Engineering - Automatic Control
  15. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.1 Mô hình khâu có bảnchấtgiánđoạn c) Mô tả bằng mô hình trạng thái gián đoạn Hệ MIMO: ⎪⎧ ⎪qAqBukkk+1 = + ⎨⎪ ⎪ ⎩⎪ xCqDukkk= + Hệ SISO: ⎪⎧ ⎪qAqbkkk+1 = + u ⎨⎪ ⎪ ⎩⎪ xdukkk= cq + •Môhìnhthuđượctừ phương trình sai phân, hay hàm truyền đạt(trênmiền ảnh z) mô tả thuật toán mà khâu thựchiện(thuật toán ĐC, lọcsố vv ). •Có thể thựchiệnbiến đổi sang các dạng chuẩntắc(chuẩn ĐK, chuẩn QS) thông dụng để mô tả hoặc tính toán. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 15 Electrical Engineering - Automatic Control
  16. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.2 Mô hình khâu có bảnchấtliêntụcvàtínhiệu vào dạng bậcthang a) Đặc điểmcủa quá trình nhớ (xem trang 7) Dạng bậcthangcủatínhiệuvàodo quá trình nhớ tạo nên. Trên miền ảnh Laplace có dạng: −sT ∞ −sT 1−e −skT Us( ) 1−e Us()= ue Gs()== s ∑ k H * k=0 Us( ) s GsH () * Us() Kếtluận: Khi xét ĐTĐK không bao giờđược phép quên khâu giữ chậm(đặctrưng cho quá trình nhớ) b) Mô tả bằng hàm truyền đạt Gọi ảnh Laplace của đáp ứng bướcnhẩy đơnvị (của hàm quá độ h(t))là H(s) ta có: * X ()sGsUs= () () −−sT sT Gs( ) =− Hs( ) e Hs( ) =−(1 e) Hs( ) Với X(s) là ảnh Laplace củabiếnra, U*(s) 1−e−sT là ảnh Laplace củachuỗi xung đầuvào ==Gs() G () sGs () s H 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 16 Electrical Engineering - Automatic Control
  17. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.2 Mô hình khâu có bảnchấtliêntụcvàtínhiệu vào dạng bậcthang b) Mô tả bằng hàm truyền đạttrênmiền ảnh z X (zGzUz) = ( ) ( ) Với Gz()được tính theo một trong hai cách mô tảởhình bên Ví dụ: Đốitượng ĐK là một khâu quán tính bậcnhất. Theo cách đithuộc nhánh bên trái: 11 tT Gs()=⇒= Hs() ⇒=− ht() (11 e1 ) () t 11++sT11 s( sT ) kT −kT T1 *Chuỗi sau gián đoạnhóa: hek =−1 zz *Chuyển sang ảnh z: Hz()=−−TT z −1 ze− 1 z −1 *Hàm truyền đạtcủa Gz()=−1 −TT ze− 1 đốitượng trên miền −TT 1−e 1 ảnh z: = −TT ze− 1 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 17 Electrical Engineering - Automatic Control
  18. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.2 Mô hình khâu có bảnchấtliêntụcvàtínhiệu vào dạng bậcthang b) Mô tả bằng hàm truyền đạttrênmiền ảnh z B(sBs) ( ) Lưu ý, khi hàm truyền đạtcódạng phân thứchữutỷ Gs()=⇒= Hs() A ssAs sẽ có khả năng tách thành các phân thứctốigiảnnhư sau: ( ) ( ) ⎧⎫ ⎪⎪1 z a) H(s) có các cực sν bấtkỳ, khác nhau: Ζ=⎨⎬ s T ⎪⎪ ν ⎩⎭⎪⎪ss− ν z− e ⎧⎫ ⎪⎪11∂m−1 b) H(s) có cực s lặplại m lần: ⎪⎪ z ν Ζ=⎨⎬mmsT−1 ⎪⎪ ν ss− ()m−1!∂sν z− e ⎩⎭⎪⎪( ν ) Tiếptụcvídụ trang trướcbằng cách đi theo nhánh bên phải: 111T *Tách H(s) thành các phân thứctốigiản: Hs()==−1 ss( +1 T11) s s +1 T zz *Tìm H(z) nhờ tìm ảnh của các phân thứctốigiản: Ζ==−{}Hs() Hz() −TT z−1 ze− 1 −TT 1− e 1 *Hàm truyền đạtcủa đốitượng trên miền ảnh z: Gz()= −TT ze− 1 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 18 Electrical Engineering - Automatic Control
  19. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.2 Mô hình khâu có bảnchấtliêntụcvàtínhiệu vào dạng bậcthang c) Mô tả bằng mô hình trạng thái gián đoạn •Cho trước đốitượng MIMO: • qAqBu(ttt) =+( ) ( ) At •Nghiệmtổng quát với t > t0 vàΦ(te) = : t A tt− A t−τ qq()te=+()0 () t⎡⎤ e() Bu()ττ d 0 ∫ ⎣⎦⎢⎥ t0 =−Φ(tt00 )()q t +−Η ( tt 00 )()u t k =0, 1, 2, •Với t0=tk và chọn t=tk+1 ta có: ⎛⎞ ⎛⎞ ⎜⎜⎟⎟ qq()tttttttkkkkkkk++11=−Φ⎜⎜⎟⎟() +−Η + 1u () ⎜⎜⎟⎟ ⎝⎠⎜⎜TT ⎝⎠ qqkkk+1 =+Φ()TTΗ ()u •Với: −1 ⎡⎤ HA(TT) =−⎣⎦⎢⎥Φ( ) IB Ưu điểm: Dễ dàng tìm đượcmôhình gián đoạncủacácđốitượng MIMO 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 19 Electrical Engineering - Automatic Control
  20. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.2 Mô hình khâu có bảnchấtliêntụcvàtínhiệu vào dạng bậcthang d) Quan hệ giữamôhìnhtrạng thái và mô hình truyền đạt •Mô hình đầy đủ của đốitượng MIMO có dạng: ⎪⎧ ⎪qqkkk+1 =+Φ(TT) Η( )u ⎨ vớiphương trình đặctính: detz I −=Φ 0 ⎪ [] ⎩⎪ xCqDukkk=+ •Ma trậntruyền đạt G(z) trên miền ảnh z của đốitượng MIMO: ⎪⎧ ⎡⎤−1 ⎪⎧ ⎡⎤−1 ⎪GCI()zzT=−⎣⎦Φ () HD () T + ⎪GCI()z =−⎣⎦zTΦ () H () T ⎪ Khâu ⎪ xGu()zzz=⇒ ()() ⎨⎪ ⎡⎤ ⎨⎪ ⎡⎤ ⎪ adj zI −Φ() T quán tính ⎪ adj zI −Φ() T ⎪ =+CHD⎣⎦()T ⎪ = CH⎣⎦()T ⎪ det ⎡⎤zTI −Φ ⎪ det ⎡⎤zTI −Φ ⎩⎪ ⎣ ()⎦ ⎩⎪ ⎣ ()⎦ •Hàm truyền đạt G(z) trên miền ảnh z của đốitượng SISO: ⎪⎧ T ⎡⎤−1 ⎪⎧ T ⎡⎤−1 ⎪Gz()=−cI⎣⎦ zΦ () T h () T + d ⎪Gz()=−cI⎣⎦ zΦ () T h () T xz() ⎪ Khâu ⎪ Gz()=⇒⎨ ⎡⎤−Φ ⎨ ⎡⎤−Φ ⎪ T adj zI () T quán tính ⎪ T adj zI () T uz() ⎪ =+ch⎣⎦()Td ⎪ = ch⎣⎦()T ⎪ det ⎡⎤zTI −Φ ⎪ det ⎡⎤zTI −Φ ⎩⎪ ⎣ ()⎦ ⎩⎪ ⎣ ()⎦ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 20 Electrical Engineering - Automatic Control
  21. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.3 Mô tả hệ trong khoảng giữahaithời điểmtríchmẫu Đặc điểm không tường minh Giữa2 thời điểm của phép biến đổi z ngược trích mẫu: tk=+( εε) T;0 ≤≤ 1 Chọnsố lượng ε đủ lớn, ta có thể mô tả x(t) bởi: ⎡xk+⇔ε T⎤ ⎡ x ⎤ ⎣⎢ (( ) )⎦⎥ ⎣ k+ε ⎦ ∞ Biến đổiz mở rộng Ζ=x Xz,ε =⎡ x z−k ⎤ {}kk++εε()∑ ⎣⎢ ⎦⎥ k=0 = Gz()(),ε Uz k =≤≤0, 1, 2, , 0ε 1 Hai trường hợp đặcbiệtcóthể dùng để kiểmtra: ε =⇒0,0Xz() = Zx {}k = Xz () ε =⇒1,1X zZxzXzx = =⎡ −⎤ () {}k+10⎣⎢ () ⎦⎥ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 21 Electrical Engineering - Automatic Control
  22. 1. Mô hình tín hiệuvàhệ thống 1.3 Mô hình hệ thống trên miền ảnh z 1.3.4 Mô tả hệ gián đoạncótrễ (tín hiệuvàodạng bậcthang) Hệ vớithờigiantrễ Td (Dead-Time): Tddd=−∞( εε) Td;1,2,;01 = ≤< dđượcmôtả bởi: ⎡ ⎤ xki= gukd−+ε − i ∑ ⎣⎢ ()d ⎦⎥ i=0 Áp dụng các kiếnthứcvề biến đổi z mở rộng và nguyên lý tịnh tiếncủa ảnh z, ta thu đượchàm truyền đạt G (z) sau: −d d Gz( ) =Ζ g = zGz( ,ε ) dd{}kd−+εd Khi Td là số nguyên lầncủa T:1) Td xuấthiện ởđầuvào: 2) Td xuấthiện ởđầura: qqhukkkd+−1 =+Φ(TT) ( ) qqhukkk+1 =+Φ(TT) ( ) Khi T là số nguyên d T T lầncủa T, chỉ cầnbổ xcqkk= xcqkd+ = k xung z-d. Khi T không d 3) Trong cả hai trường hợp: Bậccủa Φ nâng lên thành là số nguyên lầncủa (n+d)×(n+d) T, sử dụng εd (thay vì ε) để tìm ảnh z mở rộng. Trong cả 2 trường hợp, sẽ xuất hiện điểmcựclặplại d lầntạigốctọa độ. Mô hình có trễ Td ởđầuvào 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 22 Electrical Engineering - Automatic Control
  23. 1. Mô hình tín hiệuvàhệ thống Chú ý chương 1: Sinh viên phải nắm vững chương 1 và thành thạo các phương pháp gắn liền với các ví dụ sau đây 1. Ví dụ 1.3.3, 1.3.4, 1.3.5: Mô tả khâu có bản chất liên tục với tín hiệu vào bậc thang bằng hàm truyền đạt (bộ tham số của động cơ DC trong ví dụ 1.3.5 sẽ được sử dụng nhất quán trong nhiều ví dụ tiếp theo) 2. Ví dụ 1.3.6, 1.3.7: Mô tả khâu có bản chất liên tục với tín hiệu vào bậc thang bằng mô hình trạng thái gián đoạn 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 23 Electrical Engineering - Automatic Control
  24. 2. ĐK có hồitiếp đạilượng ra 2.1 Xét ổn định củahệ thống ĐK số 2.1.1 Ổn định truyền đạt Về cơ bản, khi hệ có quán tính (d = 0, D = 0), hai adj(zI −Φ) cấu trúc đềucódạng phân thứcnhư sau: •Hệ SISO: Gz()=+chT d det(zI −Φ) Bz( ) Bz( ) n cz ==∑ i adj(zI −Φ) det(zI −−−−Φ) (zzzz12)( )( zzni) i=1 zz − •Hệ MIMO: GC()z =+ HD det(zI −Φ) Biến đổi z ngược kk k gczczknn=+++11 2 2 czk;0,1,2, = Theo định nghĩavềổn định truyền đạt, dãy gk chỉ có giá trị hạnchế khi |zi|<1. Tứclàchỉ khi tấtcả các điểmcực (nghiệmcủaphương trình đặc tính) nằmbên trong đường tròn đơnvị củamặtphẳng z. 2.1.2 Tiêu chuẩn đạisố a) Sử dụng phép biến đổi tương đương 1+ w Sử dụng phép biến đổi w chuyểnmiền ổn định bên trong Ví dụ: z = đường tròn đơnvị củamặtphẳng z sang bên trái mặt 1-w phẳng phứcmới, gọilàmặtphẳng w, cho phép sử dụng 1+ w hoặc: z =− các tiêu chuẩn đạisố ROUTH và HURWITZ quen biết. 1-w 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 24 Electrical Engineering - Automatic Control
  25. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.2 Tiêu chuẩn đạisố a) Sử dụng phép biến đổi tương đương (tiếp): Nghiệmcủa đathức đặctínhN(z) chỉ nằm trong đường tròn đơnvị khi và chỉ khi tấtcả nghiệmcủa N(w) đềucóphần thựcâm. 1. Ứng vớimỗi điểmbấtkỳ thuộcmiền ảnh z: z =+ujv zuv++−11222 v ta thu đượcmột điểmmớitrênmiền ảnh w: wj== − z −1 uv22++−12 u uv 22 ++− 12 u 2. Đường tròn đơnvị uv22+=1 , biên giới ổn v wj=− định trên miền ảnh z trở thành đường thẳng: 1−u 3. Trướckhisử dụng tiêu chuẩn ROUTH hay HURWITZ ta phải chuyển đathức đặctính: '' '2 'n Nz( ) =+ a01 az + az 2 ++ azn sang miền w: 2 ww++11⎛⎞ Nw()=+ a'' a + a '⎜ ⎟ +=+ h hw + hw 2 +=0 01ww−−11 2⎝⎠⎜ ⎟ 01 2 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 25 Electrical Engineering - Automatic Control
  26. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.2 Tiêu chuẩn đạisố b) Sử dụng tiêu chuẩn Schur-Cohn-Jury: Tương tự tiêu chuẩn HURWITZ, ta sẽ phải thiết lập các định thức từ a) Sử dụng phép biến đổi tương đương các hệ số của đa thức đặc tính N(z) (tiếp): 21nn− Nz( ) =+ a01 az + az 2 ++ ann− 1 z + az 1. Tính các định thức Ck, Dk: CDknkkkkkk=+det(A BAB) ; =−= det( ) ; 1, 2, , ⎡ ⎤ ⎡⎤aa a aaank−−()1 nn−1 ⎢⎥01k− 1 ⎢ ⎥ ⎢⎥00aa⎢ a a⎥ ⎢⎥02kn− ⎢ nk−−()2 ⎥ ABkk==; ⎢ ⎥ ⎢⎥ ⎢ ⎥ ⎢⎥⎢ ⎥ ⎢⎥00 a ⎢ ⎥ ⎣ 0 ⎦ ⎣ an 00 ⎦ 2. Điều kiện cần và đủ để nghiệm của N(z) nằm trong đường tròn đơn vị sẽ làN(10) > và (−−>110)n N( ) đồng thời phải thỏa mãn: k chẵn: CD22 >0; 0 CD33 <0; 0 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 26 Electrical Engineering - Automatic Control
  27. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.2 Tiêu chuẩn đạisố Chú ý mục 2.1.2: 1. Ví dụ 2.1.1: Sử dụng phép biến đổi tương đương để khảo sát ổn định 2. Sinh viên phải tự tạo ví dụ để kiểm chứng khả năng sử dụng tiêu chuẩn Schur-Cohn-Jury trên cơ sở tự thiết lập đa thức đặc tính có nghiệm nằm trong đường tròn đơn vị. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 27 Electrical Engineering - Automatic Control
  28. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.3 Sử dụng quỹđạo điểmcực Hàm truyền Quỹđạo điểmcực Phương trình đạtvònghở trên miền z đặctính 1 zK+−=01 z 0 K 0 z =−Kz + z − z1 01 Kzz01( −+−=D ) zz 10 z − zD1 K0 zKz101+ D z − z1 z = 1+ K0 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 28 Electrical Engineering - Automatic Control
  29. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.3 Sử dụng quỹđạo điểmcực Hàm truyền Quỹđạo điểmcực Phương trình đạtvònghở trên miền z đặctính 2 zzzz−+++=( 12) zzK 1200 1 2 K0 ⎛⎞ zz12+−⎜ zz 12⎟ (z −−zzz12)( ) z =+⎜ ⎟ −K ab,022⎝⎠⎜ ⎟ 2 zzzzK−+−+−( 12 0) zzKz 1201D =0 2 22 zz− Pt. đường tròn: (zrj−+=czr) K D1 0 Với: (z −−zzz12)( ) zz=+rj jzcz; = D1 2 rzzzzzz=−12D 1() 1 ++ 2D 1 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 29 Electrical Engineering - Automatic Control
  30. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.3 Sử dụng quỹđạo điểmcực Hàm truyền Quỹđạo điểmcực Phương trình đạtvònghở trên miền z đặctính zKzzzKzz2 1+−++⎡ + ⎤ ( 012012) ⎣⎢ ( DD)⎦⎥ ++zz12 K 0 zDD 1 z 2 =0 2 22 Pt. đường tròn: (zrj−+=czr) Với: (z −−zzzDD11)( ) K0 zz=+rj jz (z −−zzz12)( ) zz− z z c = 12DD 1 2 ()()zz12+− zDD 1 + z 2 ()z +−+zzz ( z z ) zz rc=+2 1212DD D 1 D 212 ()()zz12+− zDD 1 + z 2 Khi khảo sát ổn định, bộ tham số hệ thống tạigiaođiểmcủa đường tròn đơnvị với quỹđạo điểmcựcsẽ là bộ tham số cần đượckhảo sát kỹ. Khi tồntạinhiềugiao điểm, phảitìmravị trí của điểmbấtlợinhất. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 30 Electrical Engineering - Automatic Control
  31. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số a) Dự báo quá trình quá độ trên cơ sở vị trí điểmcực Xét hệ có hàm truyền đạtsau: Xz( ) G0 ( z) Gz0 ()=⇒== GzGzRw () () Gz () Wz( ) 1+ G0 ( z) vớiphương trình đặctính: Nz( ) = 0 •ĐathứcN(z) làbậc1: N ()zzz=−1 với điểmcựcthực: z = z1 Tín hiệuracódạng: z k X ()zxz=⇒=k 1 zz− 1 vớigiátrị ban đầu:x0 =1 −<10:z1 < Dạng điều hòa tắtdần 01:<<z Dạng không điều hòa tắtdần 1 Quá trình quá độ khi đathức N(z) z1 ngoài đường tròn đơnvị: Hệ mất ổn định là bậc1 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 31 Electrical Engineering - Automatic Control
  32. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số a) Dự báo quá trình quá độ trên cơ sở vị trí điểmcực •ĐathứcN(z) làbậc2: N ()zzzzz=− (12 )( − ) Trường hợp1: Có 2 điểmcựcthực z12≠ z Tín hiệuracódạng: z Xz()= ()()z −−zzz12 1 kk ⇒=xzzk ()12 − zz12− vớigiátrị ban đầu: xx01==0; 1 Đáp ứng ra có dạng tắtdần không có hoặc có thành phần điều hòa, tùy theo điểmcực Quá trình quá độ khi đathức N(z) là bậc2 dương hay điểmcựcâm(|zi|<1) là trội. với2 nghiệmthực 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 32 Electrical Engineering - Automatic Control
  33. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số a) Dự báo quá trình quá độ trên cơ sở vị trí điểmcực •ĐathứcN(z) làbậc2: N ()zzzzz=− (12 )( − ) Trường hợp2: Có điểmcựcthựckép z12= z Tín hiệuracódạng: z Xz()= 2 ()zz− 1, 2 k−1 ⇒=xkzk 1, 2 vớigiátrị ban đầu: xx01==0; 1 So với điểmcựcthực đơn, điểmcựcthực kép thể hiệnrấtrõđặc điểm đáp ứng điều hòa. Điểmcựcthực kép trên đường tròn Quá trình quá độ khi đathức N(z) là bậc2 vị bắt đầugâymất ổn định. với nghiệmthực kép 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 33 Electrical Engineering - Automatic Control
  34. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số a) Dự báo quá trình quá độ trên cơ sở vị trí điểmcực •Đathức N(z) là bậc2: Trường hợp3: Có cặp điểmcựcphứcliênhợp z12=+αβjz; =− αβ j Tín hiệuracódạng: z Xz= () 222 zz−++2ααβ() ⎛⎞k ⎜ 1 ⎟ β ⇒=xkk 2sin;arct⎜ ⎟ ()ϕϕ = g ⎝⎠⎜ 2 ⎟ α Nhậnxét:Khi tồntạicặp điểmcựcphứcliênhợpvới thành phầnthựcâm, hệ có xu hướng gây dao động và vì vậycầnphảirất chú ý. Góc ϕ càng lớn, tầnsố củathành phầnhìnhsin cànglớn(xemkỹ trang tiếptheo). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 34 Electrical Engineering - Automatic Control
  35. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số a) Dự báo quá trình quá độ trên cơ sở vị trí điểmcực Trường hợp3 (tiếp): Xét tổng quát đốitượng PT2 chưa có ZOH ởđầuvào. 11 bz Gs()== ⇒= Gz() 1 S 21D ⎛⎞⎛⎞S 2 ⎜⎜ss⎟⎟()()z −−zzz12 1++ss2 ⎜⎜11++⎟⎟ ω ω ⎜⎜⎟⎟ 0 0 ⎝⎠⎝⎠⎜⎜δωee+−jj δω ee 22 δω+ −±δωTjT bTezTjTe===±=αωααωωαeesin ;e ;⎡⎤ cos sin e 11,2()eee⎣⎦⎢⎥ () () ωe Nhậnxét: •Trên miền z, cặp điểmcựccógóc ωeT càng lớn, ứng với tần số ωe trên miền s càng lớn. •Trên miền z, giá trị α càng nhỏ (điểm cựctiến gần đến gốc tọa độ), ứng với δe càng lớn trên miền s (điểm cực dịch xa về phía trái), quán tính càng nhỏ (động học được cải thiện). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 35 Electrical Engineering - Automatic Control
  36. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số b) Dự báo đặctínhhệ thống trên cơ sở vị trí củacặp điểmcựcmangtínhtrội (dominant) •Xét khâu tỷ lệ có quán tính bậc 2 (khâu dao động PT2): ωe = Tầnsố của thành phầnsin 11 Gs== δe = Hệ số quán tính S () với: 21D 2 ⎛⎞⎛⎞ss⎟⎟ 1++ss⎜⎜⎟⎟ω0 = Tầnsố riêng củahệ tắtdần 2 ⎜⎜11++⎟⎟ ω0 ω0 ⎜⎜δω+−jj⎟⎟ δω ⎝⎠⎝⎠ee ee D = Hệ số tắtdần δ •Công thứcquyđổi: ωω=−1;DD2222 ==e cos(0khi1); ϕϕ = D ≥ ωδω =+ e 00ω ee ω 0 0 −δet •Hàm quá độ: ht()=−1sin e()ωϕe t + ωe ⎛⎞⎛⎞ ⎜ δe ⎟ ⎜ D π ⎟ •Mức quá điềuchỉnh: Δ=h exp⎜ −π⎟ = exp⎜ − ⎟ ⎜ ⎟ ⎜ 2 ⎟ ⎝⎠ωe ⎝⎠⎜ 1− D ⎟ ππ •Thờigianquá ĐC: Tm == ω 2 e ω0 1− D •Mức quá điềuchỉnh (tính bằng %) phụ thuộc ϕ Δh [%] 0 5 10 15 20 30 40 50 ϕ [o] 0 46 54 59 63 69 74 78 3 4 •Thờigianxáclập: TT5%≈≈; 2% δδee Ý nghĩa các tham số của khâu PT2 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 36 Electrical Engineering - Automatic Control
  37. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số b) Dự báo đặctínhhệ thống trên cơ sở vị trí củacặp điểmcựcmangtínhtrội (dominant) •Xét khâu tỷ lệ có quán tính bậc 2 (khâu dao động PT2): Các nguyên tắcchọnvị trí cho cặp điểm cựcmangtínhtrội. •Nguyên tắc1: Trên cơ sở Δhmin δe min •Nguyên tắc3: Chọn Tm ⇒ ωe min < ωe •Nguyên tắc4: Để hạnchếđiều hòa có tầnsố cao, cầnthỏamãnωe < ωe max 1. Vùng tô đậm (hình bên phải) chính là vùng ưutiênđể gán cựcchohệ thống 2. Khi đãxácđịnh được đặctínhcủahệ liên tục(đã xác định được vùng ưu tiên) trên miền ảnh Laplace, ta có thể tính quy đổi qua miền ảnh z 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 37 Electrical Engineering - Automatic Control
  38. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số b) Dự báo đặctínhhệ thống trên cơ sở vị trí củacặp điểmcựcmangtínhtrội (dominant) Xuấtpháttừ z ==+essT ; δωj ta hãy tìm ảnh của vùng tô đậm (trang 31) trên miền z: a) Vùng có hệ số tắtdầnlàhằng (δe = const): −+δωjT Thay vào z ta có: ze= ( e ) Dễ dàng thấy ảnh sẽ là đường tròn −δ T có tâm tạigốctọa độ và bán kính là: e e b) Vùng có tầnsố là hằng (ωe = const): δ jTω Thay vào z ta có: z = eeT e Dễ dàng thấy ảnh sẽ là đường thẳng qua gốctọa độ với độ dốcxácđịnh bởi: ωeT 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 38 Electrical Engineering - Automatic Control
  39. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số b) Dự báo đặctínhhệ thống trên cơ sở vị trí củacặp điểmcựcmangtínhtrội (dominant) c) Vùng có hệ số tắtdầnlàhằng (D=const): Ta phải tìm ảnh của đường thẳng: sj=−ωϕωcotg + Thay vào z ta có: ze= −−2cotg2πωω( TT) ϕ ej πωω( ) Dễ dàng thấy ảnh sẽ là đường xoắn logarith như hình bên MiÒn s j ω ω Im{z} j T 1 MiÒn z 2 jω ω emax Tω T emax 4 Khi ghép các ảnh con ta sẽ Tωemin thu được vùng điểmcực trên jωe min ω 2 −δ T Re {}z T e miền z. Đây là kếtquả có ý 1 δ −ωT 2 − jωemin nghĩaquantrọng khi phân ω ω −T emin tích chấtlượng, thậmchícả − T −Tωe max − jωemax 4 khi tổng hợphệ (chọn vùng ω − j T để gán điểmcực). D δemin 2 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 39 Electrical Engineering - Automatic Control
  40. 2. ĐK có phảnhồi đầura 2.1 Xét ổn định củahệ thống ĐK số 2.1.4 Dự báo đặctínhcủahệ thống ĐK số c) Quan hệ giữavị trí điểmcựctrên miền ảnh s và miền ảnh z Chuyểnvị trí điểm cựctừ miền s sang miền z: sjii=±δω i siiiTTδω± j T zei == ee δiT ziii==±eT; ϕω 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 40 Electrical Engineering - Automatic Control
  41. 2. ĐK có phảnhồi đầura 2.2 Thiếtkế trên miềnthờigianxấpxỉ liên tục 2.2.1 Khâu ĐC theo luậtPID Luật PID trên miềnthời gian (liên tục) đượcmôtả bởi công thứcsau: K = Hệ số tỷ lệ (hệ số khuếch đại) ⎡⎤1 t T de( t) ut()=+ Ket⎢⎥ () e()ττ d +D với: T = Hằng số thời gian tích phân ⎢⎥KT∫ K dt I ⎣⎦⎢⎥I 0 TD = Hằng số thời gian vi phân Các thuậttoánPID sử dụng trong ĐK số chỉ khác nhau bởinỗ lực khi thựchiện xấpxỉ hai thành phần vi phân (D) và tích phân (I), tức là khác nhau ởđộchính xác. 1 t 1. Xấpxỉ thành phầnI: ut()= e()ττ d I T ∫ I 0 ⇒ Bảnchất là phép tính xấpxỉ diện tích củahàme(t) •Sử dụng phương pháp hình chữ nhật: TTkk−1 ukI ()≈⇒−≈∑∑ eiI−−11 uk()1 e i TTIIii==11 T uk()≈−+ uk (1 ) e II k−1 Uz −1 TI I () Tz ≈ −1 Ez() TI 1− z 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 41 Electrical Engineering - Automatic Control
  42. 2. ĐK có phảnhồi đầura 2.2 Thiếtkế trên miềnthờigianxấpxỉ liên tục 2.2.1 Khâu ĐC theo luậtPID 1. Xấpxỉ thành phầnI (tiếp): •Sử dụng phương pháp hình thang: TTkk⎡⎤11−1 ⎡⎤ uk()≈+⇒−≈+⎢⎥() e e uk()1 ⎢⎥() e e IiiIii∑∑⎢⎥−−11 ⎢⎥ TTIIii==11⎣⎦22 ⎣⎦ T 1 ukII()≈−++ uk (1 ) () e kk e−1 TI 2 −1 UzI ( ) Tz1+ ≈ −1 Ez( ) 2 TI 1− z 2. Xấpxỉ thành phầnD: •Bước1: Tìm giá trị xấpxỉ cho de(t)/dt tại các thời điểm t = kT bằng cách đặt: df() t ≈+cf cf ++ cf dt 011kk−− nkn tkT= •Bước2: Ảnh Laplace của công thứctrêncódạng: sF s≈+++ F s⎡ c c e−−sT c e snT ⎤ () ()⎣⎢ 01 n ⎦⎥ •Bước3: Khai triểnchuỗi cho các biểuthức e mũ, sau đó so sánh hệ số 2 vếđểtìm c0, c1, c2, 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 42 Electrical Engineering - Automatic Control
  43. 2. ĐK có phảnhồi đầura 2.2 Thiếtkế trên miềnthờigianxấpxỉ liên tục 2.2.1 Khâu ĐC theo luậtPID 2. Xấpxỉ thành phầnD (tiếp): 321− Ví dụ: chọn n = 2 ccc012++ =0 ccc01==;; 2 = (xấpxỉ bậc2) 22TT T −−Tc1221 Tc = T 2 cTc+=202 2 12 df( t) 1 T ≈−+⇒≈−+()()34ff f ukD () 34 eee dt22 Tkk−−12 k D T kkk −− 12 tkT= Khi chọn n = 1 (xấpxỉ bậc1) tasẽ thu được theo cách tương tự công thức quen biếtsau: df( t) 1 T ≈−()ff ⇒ uk () ≈D () ee − dt Tkk−−11 D T kk tkT= 3. Xấpxỉ luậtPID: Giả sử xấpxỉ thành phầnI theophương pháp hình chữ nhật và thành phầnD bậc1 Uz() rrzrz++−−12 ⎡ T k T ⎤ Gz()==01 2 uKe=+⎢⎥ e +−v ee R −1 kRk⎢⎥∑ i−−11() kk Ez() 1− z ⎣⎦TTC i=1 ⎡⎤Với: T Tv ⇒=+uu Kee⎢⎥ −+ e +() e −2 e + e ⎛⎞ ⎛⎞ kk−−−−−11112 Rkk k k k k TTTvvv⎜ 2 T ⎟ ⎢⎥rK=+⎜1;⎟ r =−+− K⎜ 1⎟ ; rK = ⎣⎦TTC 01RR⎜ ⎟ ⎜ ⎟ 2 R ⎝⎠TTTT⎝⎠⎜ C 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 43 Electrical Engineering - Automatic Control
  44. 2. ĐK có phảnhồi đầura 2.2 Thiếtkế trên miềnthờigianxấpxỉ liên tục 2.2.2 Mộtsố biếndạng củathuậttoánPID ThuậttoánPID2: Xấpxỉ luậtPID sử dụng phương pháp hình thang cho thành phầnI và phân thức sai phân bậc 2 cho thành phầnD. −−−123 Uz() rrzrzrz01++ 2 + 3 GzR ()== Ez() 1− z−1 Với: ⎛⎞⎛⎞TT35TT7 TT rK=++⎜⎜1;1;;vv⎟⎟ r =−+− K rK = vv r =− K 01RRRR⎜⎜⎟⎟ 23 ⎝⎠⎝⎠⎜⎜22TTCC 22 TT 2 T 2 T Chú ý mục 2.2: Sinh viên có nhiệm vụ nắm chắc phương pháp, sau đótự mình dẫn dắt lại các thuật toán sau 1. PID (TP tích phân xấp xỉ hình chữ nhật, TP vi phân xấp xỉ bậc nhất) 2. PID2 (TP tích phân xấp xỉ hình thang, TP vi phân xấp xỉ bậc hai) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 44 Electrical Engineering - Automatic Control
  45. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO a) Mô tả hệ SISO Cấutrúccủa GR(z) đãxác định. Cần đi tìm bộ tham số tối ưu. −1 Xz() bbz+++−−1 bzm Bz( ) •Đốitượng ĐK có trễ: Gz==01 m z−−dd = z S () −−1 n −1 Uz() 1+++az1 an z Az( ) −1 Uz() rrz+++−−1 rzν R(z ) •Khâu ĐC: Gz==01 ν = R () −−1 μ −1 Ez() 1+++pz1 pμ z Pz( ) X (zGzGz) ( ) ( ) Ez( ) 1 •Hàm truyền đạt Gz()==RS •Sai lệch ĐC = W Wz1+ G zG z Wz1+ G zG z chủđạo: ( ) RS( ) ( ) phụ thuộc w: ( ) RS( ) ( ) Xz( ) GS ( z) Uz( ) GR ( z) •Hàm truyền đạt GzV ()== •Đạilượng ĐK = Vz( ) 1+ G( zG) ( z) Wz( ) 1+ G( zG) ( z) nhiễu: RS phụ thuộc w: RS 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 45 Electrical Engineering - Automatic Control
  46. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO b) Vai trò của thành phần tích phân I ở chếđộtĩnh (chếđộxác lập) ⎡ ⎤ •Yêu cầu: đảmbảotriệt tiêu sai lệch tĩnh limezEzk =⇒ 0 lim( − 1) ( ) = 0 kz→∞ →1 ⎣ ⎦ vớitínhiệuvàocó •Khi có tác động chủđạo: Ez( ) 1 z = dạng bướcnhẩy: Wz()= Wz( ) 1+ GRS( zG) ( z) z −1 Nếu ĐTĐK là khâu tỷ lệ có quán tính, −−11 z Pz()() Az Ez= độ dư sai lệch ĐC sẽ triệt tiêu khi: () −−11 −−− 11d z −1 Pz()()()() Az+ Bz Rz z P(1) B(1) = 0 với KS = PKR(11)+ S ( ) A(1) Chú ý: Khi ĐTĐK là khâu I: A()10= Ez( ) G( z) z •Khi có tác động nhiễu: =− S với: Vz()= z −1 Vz( ) 1+ GRS( zG) ( z) KP(1) Nếu ĐTĐK là khâu tỷ lệ có quán tính, độ dư sai lệch ĐC sẽ triệt tiêu khi: −=S 0 PKR(11)+ ( ) Chú ý: Khi ĐTĐK là khâu I, do A () 10 = ta có: −=PR()110 () S −−11 Để bảo đảmkhửđộdư ĐC, phảithỏa mãn P(1)=0. Rz( ) Rz( ) Gz()== Nghĩalà, thuậttoán ĐC cũng phải có thành phần R −−−11'1 Pz()()()1− z P z tích phân I (như ĐK tương tự) với công thức sau: Intergral Part 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 46 Electrical Engineering - Automatic Control
  47. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO c) Tìm bộ tham số ĐC trên cơ sở các tiêu chuẩn tích phân TC diện tích tuyến ∞ ∞ etdt() T ek Các bướctính: tính I ∫0 ∑ L k=0 1. Tìm ảnh E(z) có ∞ ∞ chứa các tham TC diện tích bình 22 etdt() T ek số của khâu ĐC phương I ∫0 ∑ Q k=0 2. Chuyển E(z) sang ∞ TC trị tuyệt đối ∞ dạng sai phân để et() dt T ek ∫0 ∑ tìm công thức củadiện tích IB k=0 tính ek ∞ ∞ TC trị tuyệt đốicủadiện 2 3. Lắp ek vào tiêu et() tdt T() kek tích I có trọng số t ∫0 ∑ BT k=0 chuẩnvàtìmcực tiểucủatổng, phụ ∞ ∞ TC diện tích bình ⎡⎤22 22thuộcbộ tham số et()++λλ utdtT () ekk u phương mở rộng I ∫0 ⎣⎦⎢⎥∑() k=0 của khâu ĐC Tiêu chuẩntrên Tiêu chuẩntrên Tên tiêu chuẩn miền t liên tục miền t gián đoạn 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 47 Electrical Engineering - Automatic Control
  48. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO d) Tìm bộ tham số ĐC trên cơ sở tiêu chuẩntối ưumodule số Đặtvấn đề: Xz( ) GRS( zG) ( z) Hãy tìmGz() sao choGzW ()== thỏamãnGj()ω =1 trongdảitần R Wz1+ G zG z W số càng rộng càng tốt. ( ) RS( ) ( ) Có thể viếtlại công thứctổng quát ở trang 39 cho các khâu ĐC số thông dụng như sau: IPIPIDPID2 V −1 −−12 −−−123 R VdzR (1+ 1 ) VdzdzR (1++12) VdzdzdzR (1++123 +) −1 1− z −1 −1 −1 ( ) (1− z ) (1− z ) (1− z ) Hệ số khuếch đại VR theo TC tối ưu module cho sẵn trong bảng ở trang kế tiếp. Các hệ số d1-3 được tính theo công thứcthuộcbảng sau đây: IPIPIDPID2 =++ = daa112=+ daaadaaa11233123; da11= daa212= daaaaa212312=+() + 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 48 Electrical Engineering - Automatic Control
  49. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO d) Tìm bộ tham số ĐC trên cơ sở tiêu chuẩntối ưumodule số (tiếp) ĐTĐKHệ số khuếch đại VR ĐTĐKHệ số khuếch đại VR 2 2 VS −1 (1+ a ) 1 (1+ a ) z IPI:;:1 PI : 2 1+ az−1 Va1− V −−12 Vbbabb⎡ 13++ 5 +−++ 1 3 ⎤ ( 1 ) SS( 1) VbzbzS (1++12) S ⎣()()122 12⎦ z−1 2 −−11 1 (1+ a1) (11++az12)( az ) I : PID: ⎡ ⎤ VbbS (13++12 5) −1 VbabS ()()13++−+11 1 1 VbzS (1+ 1 ) ⎣ ⎦ z−1 2 −1 1 (1+ a2 ) −−12 (1+ az1 ) PI : Vbzbz1++ PI : S ( 12) −2 Vbbabb⎡ 35++ 7 + 13 ++ 5 ⎤ VbS (13+ 1) z S ⎣()()122 12⎦ −−11 (11++az12)( az ) 1 1 PID: −−−123PI : Vbb35++ 7 Vbzbzbz1++ + Vbbb35++ 7 + 9 S ( 12) S ( 123) −2 S ( 123) z 2 −1 (1+ a3 ) (1+ az1 ) PID: VvS []132+ av −1 2 VbzS (1+ 1 ) (14−+aa11) −−−−1231 z−1 P : VbzbzbzzS (1++123 +) vbbb1123=+13 + 5 + 7 −−11 ⎡ ⎤ VabbS (11−−+111)( ) 4 (11−+zaz)( 1 ) ⎣ ⎦ −−−111 vbbb=−135 + + + (111+++az123)( az)( az ) 2123 2 1 (1+ a2 ) PID2: Vbz1+ −1 PI : S ( 1 ) −1 ⎡ ⎤ VbbbS (13++123 5 + 7) z VbabS ⎣()()13++−+12 1 1⎦ −−11 Vbzbzbzz1++−−−−1232 + (11++az12)( az ) 1 S ( 123) 1 PID: PID2: 111+++az−−−111 az az VbS (13+ 1) ( 123)( )( ) VbbbS (35++123 7 + 9) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 49 Electrical Engineering - Automatic Control
  50. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO e) Tìm bộ tham số ĐC bằng phương pháp gán điểmcực cho vòng ĐC Hàm truyền đạtcủacấutrúcSISO ở trang 39 có đathức đặctínhnhư sau: ⎡ ⎤ ⎢ ⎥ ⎡ ' ⎤ a0 Nz()=+ PzAz () () RzBz () () ⎢an 00 bn 00 ⎥ ⎡⎤pn−1 ⎢ ⎥ ⎢ ⎥ ⎢⎥⎢ ' ⎥ −− − ⎢⎥a =+zpzpzazann12 ++ nn + 1 ++ ⎢aann−1 0 bbnn−1 0 ⎥ pn−2 ⎢ 1 ⎥ ()()111nn− ⎢ ⎥ ⎢⎥⎢ ⎥ ⎢⎥ ⎢⎥ ⎢ ⎥ nn−−12 n − 1 n − 2 ⎢ ⎢⎥⎢ ⎥ ++++()()rz01 rz rnn− 112 bz +++ bz b ⎥ ⎢a 0 ⎥ ⎢⎥⎢ ⎥ ⎢ 3 ⎥ ⎢⎥⎢ ⎥ Dạng tổng quát của đathứctrênlà: ⎢aa 0 ⎥ ⎢⎥p ⎢a' ⎥ ⎢ 2 n ⎥ ⎢⎥1 ⎢ n−2 ⎥ 21n− .⎢⎥= '' '2221nn−−⎢aa abb⎥ r ⎢ ' ⎥ Nz()=−=+++∏ ( z zin ) a01 az a 22− z + z ⎢ 12n− 11 n ⎥ ⎢⎥n−1 ⎢aann−1 −⎥ i=1 ⎢ ⎥ ⎢⎥⎢ ⎥ ⎢1 bn−1⎥ ⎢⎥⎢ ⎥ Trong đó, z là các điểmcựctadự kiếngán ⎢ ⎥ ⎢⎥⎢ ⎥ i ⎢ ⎥ ⎢⎥ ⎢ ⎥ '' ⎢ ⎥ ⎢⎥⎢ ⎥ cho hệ, vì vậycáchệ số aa − có thể ⎢⎥' 022n ⎢ a1 b2 ⎥ r1 ⎢aa− ⎥ ⎢ ⎥ ⎢⎥⎢ 23n− 2⎥ đượccoilàđãbiết. ⎢ ⎢⎥⎢ ⎥ 01 0b1 ⎥ ⎣⎦⎢⎥r0 ' Các tham số ab; của ĐTĐK là cho ⎢ ⎥ ⎣⎢aa22n− − 1⎦⎥ 11nn ⎣⎢ ()n−1 columns n columns ⎥⎦ trước. Vì vậy, sau khi so sánh hệ số củahai công thứctrêntasẽ thu được hệ phương trình bên, cho phép tính bộ tham số của GR(z). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 50 Electrical Engineering - Automatic Control
  51. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO Chú ý mục 2.3.1: Sinh viên phải hiểu phương pháp thiết kế và kiểm tra lại hiểu biết của mình qua tính toán lại các ví dụ sau 1. Ví dụ 2.3.1: Thiết kế trên cơ sở các tiêu chuẩn tích phân (mục 2.3.1c) 2. Ví dụ 2.3.2: Tìm bộ tham số ĐC theo phương pháp gán điểm cực (mục 2.3.1e) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 51 Electrical Engineering - Automatic Control
  52. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.1 Thiếtkế tối ưuthamsố cho các hệ SISO f) Giải pháp Antireset-Windup khi biến ĐK U(z) đivàogiớihạn Uz−1 −−12 −n −1 ( ) rrzrz01++ 2 ++ rzn •Hiệntượng: Biếnra GzR ()== Ez−1 1− z−1 uk đi vào bão hòa (bị () chặn), sai lệch ĐC e k r urerere=+ + +++ reu⎪⎫ uu− vẫntồntạihoặcvẫn kkk01122−− k nknk −− 1⎪ r ()kk ⎬⇒=−ee tăng. Khi ra khỏibão rr ⎪ kk r urererekkk=+01122−− + k +++ reu nknk −− 1⎭⎪ 0 hòa, hệ có nguy cơ dao động mất ổn định. •Nguyên nhân: Thành phần I tiếptụctích phân mà vẫn không tăng được uk. •Giải pháp: Hiệu chỉnh ngược ek để ngừng tích phân. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 52 Electrical Engineering - Automatic Control
  53. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.2 Thiếtkế khâu ĐC kiểubù(tối ưucấu trúc) cho hệ SISO Nguyên lý: Tối ưucấutrúc: Đặc điểmcủahệđượcchotrướcqua GW(z), cầntìm GR(z) ⇒ vì vậy, cả cấutrúclẫnthamsố của GR(z) đềuchưabiết. 2.3.2.1 Thiếtkế khâu ĐC kiểu bù (Compensation Feedback Controller): Bộ ĐC kiểu cân bằng mô hình •Thiếtkế trên cơ sở cho trước đặc điểmtruyền đạtchủđạo: GzGz( ) ( ) 1 G( z) Gz()=⇒=RS Gz() W ;1 Gz() ≠ WR11+−GzGz Gz G z W RS() () S() W() •Thiếtkế trên cơ sở cho trước đặc điểm Term of Reliability truyền đạt nhiễu: Gz( ) 1 Gz( )− Gz( ) Gz()=⇒=SSV Gz() VR1+GzGz Gz Gz RS() () S() V() Term of Reliability Mệnh đề đặctrưng Mệnh đề đặctrưng cho “tính cho đặctínhbù khả thi” củathiếtkế 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 53 Electrical Engineering - Automatic Control
  54. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.2 Thiếtkế khâu ĐC kiểubù(tối ưucấu trúc) cho hệ SISO 2.3.2.1 Thiếtkế khâu ĐC kiểubù(tiếp): Khi cho trước đặc điểm truyền đạt chủ đạo Gw(z) 1 ⎡⎤xz−−12+−() x x z +−() x x z − 3 ++− (1 x ) z −N Xz() ⎣⎦⎢⎥12132N− 11− z−1 GzW ()== Wz() 1 1− z−1 Để đạilượng điều chỉnh (ĐLĐC) X(z) bám theo đại lượng chủđạo W(z) nhanh, hàm GW(z) phảilà một đathứccó bậcthấp. Số mũ N trong công thức trên nói lên: Sau N bước, giá trị của ĐLĐC sẽđuổikịpgiátrịđặtcủa đạilượng chủ đạo. Tuy nhiên, nguyên lý này cần đượcápdụng thận trọng vì dễ gây nên các biến động lớnchoĐLĐC khi xẩy ra quá trình quá độ. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 54 Electrical Engineering - Automatic Control
  55. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.2 Thiếtkế khâu ĐC kiểubù(tối ưucấu trúc) cho hệ SISO 2.3.2.2 Các hạnchế củabộ ĐC kiểubù Với α ≠ 0, phân thức G(z) a) Tính khả thi củathuậttoán: n ββ+++z−−1 βz m được coi là có tính khả thi Gz= 01 m •Khái niệm“tính khả thi”: () −−1 n nếuthỏamãnm ≤ n. 1+++αα1zz n Rz−−11 Bz ⎪⎫ ⎧ RB •Để bảo đảmtínhkhả thi của ν ( ) m ( )⎪ ⎪ ν m Gz==; Gz ⎪ ⎪GzW ()= RS() −−11() ⎪⎪⎪ G (z), phảithỏamãn: d ≥ d ⇒ PAμνnm+ RB W W S Pzμ () Azn ()⎬⎨ ⎪⎪ Chú ý: Để hạnchế Computing Time, ⎪⎪ dnmW =−+−()()μν μν≥≥;;nmdRS =−=− μν ; d nm⎪⎪⎭⎪ ⎩ nên chọn dR thấp. Ví dụ: dR = μ - ν = 0 dR, dS, dW: Bậctương đốicủa GR(z), GS(z), GW(z) b) Giản ướccácđiểm không và điểmcực: c) Đáp ứng ở khoảng giữacác NếumôhìnhGS(z) là chính xác so với đốitượng thực GS0(z), khi thời điểmtríchmẫu: mắcnốitiếp GR(z) và GS0(z) trong vòng ĐC, điểm không và điểm GW(z) cho trướcchỉ áp đặt đặc cựcsẽ giản ước (bù) lẫn nhau. Đây là điều“khó xẩyra”, chúng điểmcủa đáp ứng ra tạicác chỉ có thể bù gần đúng. Vì lẽđó: Chỉ có thể sử dụng bộ ĐC bù thời điểmtríchmẫu. Ở cho các đốitượng có điểmcựcvàđiểm không nằm khá sâu phía khoảng giữacóthể xẩyradao bên trong đường tròn đơnvị. 1 Gz( ) động khi đốitượng có quán Gz()= W R tính lớnvàG (z) có bậcthấp. GzSW( )1− G( z) W 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 55 Electrical Engineering - Automatic Control
  56. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.3 Thiếtkế khâu ĐC kiểu Dead - Beat (tối ưucấu trúc) cho hệ SISO Nguyên lý: •Khâu Dead-Beat (DB) cho phép thựchiện quá trình quá độ trong khoảng thờigianhữu hạn định trước ⇒ Sai lệch ĐC bị triệttiêusaumộtlượng hữuhạnchukỳ trích mẫu. •Có thể thiếtkế theo đặctínhchủđạohay đặc tính nhiễu. •Nguyên lý điềuchỉnh DB chỉ có thể thựchiện được trong các hệ thống ĐK số. 2.3.3.1 Thiếtkế khâu Dead-Beat theo đặctínhchủđạo N−1 •Sai lệch ĐC E(z) sẽ bị triệttiêusau −i tứclà: e = 0 với i ≥ N Ez()= ∑( ezi ) i đúng N chu kỳ tính, nếu E(z) có dạng: i=0 ⎡ ⎤ -1 •Điều đó, theoEz( )=−⎣1 GW ( zWz)⎦ ( ) chỉ xẩy ra khi GW(z) là một đathứchữuhạnK(z ) với tổng các hệ số bằng 1. −1 Gz() B()z •Với: G() z===R Gz() GzGzGz () () () WSuSu1+GzGz −1 RS() () Az() Gzu( ) -1 GW(z) chỉ là một đathứchữuhạn K(z ) khi có thể biểudiễn Gu(z) dướidạng một đathức M(z-1) hữuhạnvàcókhả năng khử A(z-1) ở mẫusố. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 56 Electrical Engineering - Automatic Control
  57. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.3 Thiếtkế khâu ĐC kiểu Dead - Beat (tối ưucấu trúc) cho hệ SISO 2.3.3.1 Thiếtkế khâu Dead-Beat theo đặctínhchủđạo(tiếp) -1 B zKzLzBz−−−−1111L(z ) là đathứchữuhạn, cho ( ) GzW () ( ) ( ) ( ) •Vậy: GzS ()=== = phép thựchiện các yêu cầuvề A zMzLzAz−−−−1111Gz() () u () ()() đặctínhở chếđộxác lập, hay ⎪⎧Gz()== Kz−−−111 LzBz ⎪ W () ()() đặttrướcbiênđộ của ĐLĐK ở ⇒ ⎨⎪ −−−111 quá trình quá độ. ⎪Gz()== Mz Lz Az ⎩⎪ u ( ) ( ) ( ) −−−111 Rz( ) Gz() Lz( ) Az( ) Gz==u = R () −−−111 Pz( ) 1−GzW () 1− Lz( ) Bz( ) Hệ thống vớihàmtruyền đạt chủđạonhư bên có (m + s) •Khâu Dead-Beat ở trên sẽđem lạihàm điểmcựcnằmtạigốctọa độ truyền đạtchủđạonhư sau: củamiền z. Trong đó, m là −−11 − 1 bậccủa đathứctử số của GzW ( )== LzBz( ) ( ) Kz( ) hàm truyền đạt GS(z) của đối ms+ −−−1 ms kz0 ++ kms+ tượng điềukhiển, s là bậc =+kkz ++ kz = -1 01 ms+ zms+ của đathức L(z ) do ta chọn. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 57 Electrical Engineering - Automatic Control
  58. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.3 Thiếtkế khâu ĐC kiểu Dead - Beat (tối ưucấu trúc) cho hệ SISO 2.3.3.1 Thiếtkế khâu Dead-Beat theo đặctínhchủđạo(tiếp) ⎧⎫ •Để đảmbảokhử sai lệch ĐC khi ⎪⎪−−−111⎡⎤1 limezLzBzk =−− lim⎨⎬()()() 1 1 = 0 k kz→∞ →1 ⎪⎪⎣⎦⎢⎥−1 wk = 1 (bướcnhẩy) cầncó: ⎩⎭⎪⎪1− z sm •Điềukiệntrênđượcthỏamãnkhi1110−=LB( ) ( ) , lb= 1 tứclàkhitachọncáchệ số của L(z-1) thỏamãn: ∑∑i j ij==00 -1 −1 -1 −−11 1. Đathức L(z )códạng Lz( )= l0 1. Đathức L(z )códạng Lz( )=+ l01 lz −1 lAz −−11 m 0 ( ) ()()llzAz01+ Gz()= Gz=⇒+= l l1 b R −1 Rj() −−1101 ∑ 1−lB0 () z 1−+()()llzBz01 j=0 −−11 m Uz()= Lz()() Az Wz() ⇒=lb0 1 j ∑ ⇒=ulawlalawkk00 +() 01 + 10 k−−− 1 ++ law 1 nkn 1 j=0 Giá trị khắc nghiệtnhất khi có wk = 1(k) là: ula000= Nhậnxét:Do l0 chỉ phụ thuộcvào -1 ⇒=− các hệ số của B(z ), ta không thể •Chọn l0 sao cho u0 •Dàn đều u0 = u1: llaa0101 a0 −a1 tác động tới u (biên độ của ĐLĐK không quá lớn: ll01==; 0 1 u mm ⇒=l −0 ()aa−− b() aa b khi k = 0) thông qua chọn l0. 1 01∑∑j 01 j bb12+++ bm a 0 jj==11 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 58 Electrical Engineering - Automatic Control
  59. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.3 Thiếtkế khâu ĐC kiểu Dead - Beat (tối ưucấu trúc) cho hệ SISO 2.3.3.2 Thiếtkế khâu Dead-Beat theo đặctínhnhiễu •Khi cầnkhử nhiễu theo nguyên lý Dead-Beat, có thể tiếnhànhthiếtkế tương tự. Đạilượng điềuchỉnh X(z) phảilàmột đathứchữuhạncủa z-1, có bậcxácđịnh bởi B(z-1) và đathức -1 L(z ): −−11 Xz( )= Lz( ) Bz( ) •Từ hàm truyền đạtnhiễu Xz( ) GS ( z) Vz( ) 1 GzVR()== ⇒ Gz() =− (trang 38) ta rút ra: Vz( ) 1+ GzGzRS( ) ( ) Xz( ) Gz S( ) −−−111 •Khi nhiễucódạng vk = 1k ta thu 11−−( z )Lz( ) Az( ) Gz()= được khâu Dead-Beat sau: R −−−111 (1− zLzBz) ( ) ( ) •Tham số của L(z-1) đượcxácđịnh theo phương pháp tương tựởmục 2.3.3a). •Dễ dàng thấyrằng GR(z) có tác dụng khử các điểm không của đốitượng (do mẫusố chứa B(z-1)). Do các điểm không trong thựctiễn đôi khi nằmngoài đường tròn đơnvị, khâu Dead-Beat có thể gây dao động và vì vậybị hạnchế khả năng sử dụng. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 59 Electrical Engineering - Automatic Control
  60. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.3 Thiếtkế khâu ĐC kiểu Dead - Beat (tối ưucấu trúc) cho hệ SISO Chú ý mục 2.3.3: Sinh viên cần tính toán lại các ví dụ sau 1. Ví dụ 2.3.3 (Thiết kế khâu ĐC theo kiểu bù, phương án tối giản): Nhằm hiểu phương pháp thiết kế và ưu điểm mà bộ ĐK hứa hẹn, nhưng đồng thời cảm nhận được nguy cơ nếu không xét tới tính khả thi. 2. Ví dụ 2.3.4 (Thiết kế khâu ĐC theo kiểu Dead – Beat): Nhằm hiểu phương pháp thiết kế và ưu điểm mà bộ ĐK hứa hẹn, đồng thời tính toán thành thạo. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 60 Electrical Engineering - Automatic Control
  61. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.4 Thiếtkế hệ thống ĐC số nhiềumạch vòng cho đốitượng SISO a) Cấu trúc có vòng bù nhiễu Có tác dụng bù nhiễu v ởđầu vào của đốitượng khi nhiễu là đo được. Khâu ĐC chính đượcthiếtkế như bình thường. b) Cấu trúc có vòng ĐC chặnnhiễu ngay từđầuvàocủanhiễu Đòi hỏi nhiễuphảilàđo được, đồng thờiphảicókhả năng can thiệp ởđầuvàocủa nhiễunhờ mộtthiếtbị ĐK. Hai vòng ĐC đượcthiếtkế hoàn toàn độclập. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 61 Electrical Engineering - Automatic Control
  62. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.4 Thiếtkế hệ thống ĐC số nhiềumạch vòng cho đốitượng SISO c) Cấutrúccónhiều vòng ĐC phân cấp Đây là giải pháp quen biết, rấthay đượcsử dụng trong thựctiễn. d) Cấu trúc có vòng ĐC phụ hỗ trợổn định •Giảmtácđộng củanhiễu nhờđạilượng ĐK phụ. •Cảithiện động họcvàtăng dự trữổn định 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 62 Electrical Engineering - Automatic Control
  63. 2. ĐK có phảnhồi đầura 2.3 Thiếtkế trên miềnthời gian gián đoạn 2.3.4 Thiếtkế hệ thống ĐC số nhiềumạch vòng cho đốitượng SISO e) Cấu trúc có vòng ĐC bù trễ •Đốitượng có trễđượcmắc song •Hàm truyền đạtban đầu: •Sau khi bù sẽ chỉ còn: song với GRd, có hàm truyền đạt −d −d GzGzzRS() () GzGzzRS() () sao cho mô hình chung không Gz()= GzW ()= W −d 1+GzGz() () còn trễ: 1+GzGzzRS() () RS −d Với đathứcmẫusố không Gzz( ) += G( z) Gz( ) sRds còn chứa z-d −d ⇒=−GzRd() (1 zGz) s () 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 63 Electrical Engineering - Automatic Control
  64. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.1 Mô hình trạng thái liên tục và các tính chất ⎪⎧ • ⎪qAqBu()ttt=+ () () Xét mô hình (mục 1.3.2c) với n biến ⎨ ⎪ trạng thái, m biếnvàovàr biếnra: ⎩⎪xCqDu()ttt=+ () () a) Các tính chất quan trọng cầnnhắclại: aa11−λ 12 a 1n •Giá trị riêng (eigenvalues) và vector giá aa−λ a trị riêng: Điềukiện để hệ pt. tuyến tính det()AI−=λ 21 22 2n = thuầnnhất AeeAIe0=⇒−λλ() = aa a−λ có nghiệm e ≠ 0 chỉ khi det(AI−=λ ) 0 nn12 nn n nn−1 Chú ý: Pn(λ)=0 là phương trình đặc tính. Ứng với ==−+Paaann(λλλ) ( 10) −110 +++= λ mỗi nghiệm(mỗigiátrị riêng) λi (i = 1, 2, , n) ta có thể tìm được từ hệ phương trình (A - λiI)ei = 0 một vector giá trị riêng ei tương ứng. •Quan hệ giữa giá trị riêng và đặc điểm ổn Phương trình det(sI–A) = 0 là pt. đặc tính, định củahệ: vớidet(sI–A) là đathứcmẫusố của hàm/ma trận truyền đạtcủa đốitượng SISO/MIMO. •Định lý Cayley–Hamilton: Mỗi n detAI−=λλPaaa =−+ 1 λλnn−1 +++= λ 0 ma trậntoànphương đềuthỏa ()()()nn−110 n nn−1 mãn pt. đặctínhcủa chính nó. ⇒=−++++=Paaann()AAA (1 ) −110 AI0 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 64 Electrical Engineering - Automatic Control
  65. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.1 Mô hình trạng thái liên tục và các tính chất b) Phép chuyểnhệ tọa độ trạng thái và tác động tới giá trị riêng: •Định nghĩa vector trạng thái mới: qTqqTq(tt) =⇒=( ) ( t) −1 ( t) •• • •Đạohàmcả 2 vế: qTqqTAqTBu()tt=⇒=+ () () t () t () t • −1 ⇒=qTATqTBu()ttt () + () A B −1 •Phương trình đầura: xCqDuCTqDu()ttt=+= () () () tt + () C •Thay thế vàomôhìnhban đầu: ATATBTBCCTDD===−−11;; ; ⎪⎧ • ⎪qAqBu()ttt=+() () •Môhìnhtrangtháimới: ⎨ với qTq()tt00= () ⎪xCqDu=+ ⎩⎪ ()ttt() () Quan trọng: T là phép chuyểnhệ tương đương không làm thay đổibảnchấtvậtlý-kỹ thuậtcủahệ. Cả hai hệđều có chung vector biếnvàou(t) và vector biếnrax(t). Giá trị riêng (nghiệmcủaphương trình đặc tính) củahệ thống là bấtbiến sau phép chuyểnhệ tương đương. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 65 Electrical Engineering - Automatic Control
  66. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.1 Mô hình trạng thái liên tục và các tính chất c) Tính điềukhiển được e) Tính quan sát được Hệ MIMO nói trên sẽ là điềukhiển được hoàn Hệ MIMO nói trên sẽ là quan ⎡ C ⎤ toàn khi và chỉ khi ma trận(n, nm) sau đây: sát được hoàn toàn khi và chỉ ⎢ CA ⎥ n−1 khi ma trận(nr, n) bên có ⎢ ⎥ QBABABC = ⎡⎤,,, Q = ⎣⎦hạng là n. Nghĩalà, ma trận O ⎢ ⎥ có hạng là n. Nghĩalà, ma trận điềukhiển Q ⎢ ⎥ C quan sát Q phảichứa n n−1 O ⎣⎢CA ⎦⎥ phảichứa n vector cột độclậptuyến tính. Khi vector hàng độclậptuyến tính. đốitượng là SISO, ma trận điềukhiểncókích cỡ (n, n) và công thức: Khi đốitượng là SISO, ma trận quan sát bên vớikíchcỡ (n, n) T ⎡⎤ n−1 ⎡ c ⎤ QbAbAbC = ⎣⎦,,, có hạng n và n vector hàng cTAi ⎢ T ⎥ và n vector cột Aib (i = 0, 1, 2, ) phảilàcác (i = 0, 1, 2, ) phảilàcác ⎢ cA⎥ QO = vector độclậptuyến tính. vector hàng độclậptuyến tính: ⎢ ⎥ ⎢ ⎥ Chú ý: Để kiểm tra tính ĐK đượccủahệ SISO Chú ý: Để kiểm tra tính QS Tn−1 ⎣⎢cA ⎦⎥ chỉ cầnkiểmtrađiềukiệndetQC ≠ 0. đượccủahệ SISO chỉ cầnkiểm tra điềukiệndetQ ≠ 0. d) Dạng chuẩn điềukhiển: Sử dụng phép O f) Dạng chuẩn quan sát: Sử dụng phép chuyển chuyểnhệ tọa độ trạng thái sau: TQ= −1 −1 C hệ tọa độ trạng thái sau: TQ= O 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 66 Electrical Engineering - Automatic Control
  67. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.1 Mô hình trạng thái liên tục và các tính chất g) Dạng chuẩn Jordan (chuẩn modale): Giả sửđốitượng có n giá trị riêng khác nhau λ1, λ2, , λn với n vector riêng độclập e1, e2, , en. •Thiếtlậpma trậntoànphương M: ⎡ ⎤ Mee= ⎣ 12,,, en ⎦ •Chọnma trận chuyểnhệ tọa độ T: TM=⇒=−−11 T M -1 ⎡⎤⎡⎤ •Hãy xét A = TAT , ta có: MA=⇒ AM⎣⎦⎣⎦ e12,,, e enn A = Ae 1 , Ae 2 ,, Ae •VìeAeλ = , phương trình ⎡ ⎤ ii i λ1 00 trên chỉ thỏamãnkhivàchỉ khi ⎢ ⎥ ⎢ 00λ ⎥ ma trận A = TAT-1 là ma trận −1 ⎢ 2 ⎥ AMAM=== Λ ⎢ ⎥ −1 đường chéo Λ: T T ⎢ ⎥ ⎢ 00 λ ⎥ •Từđóthuđượcmôhìnhdạng ⎣⎢ n ⎦⎥ chuẩn Jordan (còn gọilàchuẩn ⎪⎧ • ⎪qqMBu()tt=+Λ () −1 () t modale), cho phép thiếtkế bộ ĐK ⎪ ⎪ −1 ⎨⎪ B qMq()tt= () gán các điểmcực không tương ⎪ 00 ⎪xCMqDu()ttt=+() () tác lẫn nhau. ⎪ ⎩⎪ C 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 67 Electrical Engineering - Automatic Control
  68. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.2 Cấutrúccơ sở củahệ ĐK trạng thái liên tục q t • ( 0 ) q ()t q (t ) x (t ) uRq(tt) =− ( ) • MIMO :qABRq()tt=−[]() Đốitượng ĐK • ⎡⎤T SISO :qAbrq()tt=−⎣⎦ () Khâu ĐC trạng thái a) Thiếtkế theo phương pháp gán cực n Phương trình đặctínhcủa vòng ĐC khép kín có dạng: det ⎣⎦⎡⎤sIABR− ()()−=−∏ ssi i=1 Khi cho trước si nhằm đạt đượcmột đặctínhđộng họcnhất định, nếu so sánh hệ số hai vế của phương trình trên ta sẽ thu đượcmộthệ có n phương trình của(m×n) phầntử thuộc R. Đólà hệ phương trình phụcvụ tổng hợp khâu ĐC. Các thiếtkế có tên Ackermann (hệ SISO), modale (hệ MIMO). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 68 Electrical Engineering - Automatic Control
  69. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.2 Cấutrúccơ sở củahệ ĐK trạng thái liên tục b) Thiếtkế theo tiêu chuẩnchấtlượng Hàm mụctiêu(hàmchấtlượng) được định nghĩa: ∞ ⎡ TT⎤ Ittttdt=+∫ ⎣qQquSu() () () ()⎦ 0 •Ma trận R cần đượcthiếtkế sao cho I đạt đượcgiátrị bé nhất. Hai vector trạng thái q(t) và đầu vào u(t) tham gia vào tiêu chuẩnchấtlượng qua hai ma trậntrọng số Q và S. Đó là hai ma trận hằng, toàn phương và xác định dương (positive definite). •Khi chọn t = ∞ ta thu được R là mộtma trậnhằng. Khi chọn t là mộtgiátrị hữuhạn, ta thu được ma trận R(t). Khi tìm R sao cho I đạtgiátrị tốithiểutasẽ phảigiảiphương trình Riccati. 3.1.3 Các cấutrúcmở rộng củahệ ĐK trạng thái liên tục a) Hệ ĐK trạng thái có khâu lọc đầuvào Sau khi đãthiếtlập đặctínhđộng họccủahệ thông qua thiếtkế R, có thể bổ sung thêm khâu (ma trận) lọc đầuvàoKVF để cảithiện đặctínhtĩnh (Ví dụ: xác lập điểmlàmviệc, phân kênh tĩnh). • qABRqBKw()ttt=−[]() + VF () 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 69 Electrical Engineering - Automatic Control
  70. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.3 Các cấutrúcmở rộng củahệ ĐK trạng thái liên tục a) Hệ ĐK trạng thái có khâu lọc đầuvào(tiếp) q (t0 ) • q ()t q (t ) x (t ) Khâu lọc đầuvào Đốitượng ĐK Khâu ĐC trạng thái •Khi vector chủđạo w là hằng, sau khi quá trình quá độ –với động học do R quyết định – đã qua, vector trạng thái xác lậplàq , với: • ∞ q()t = 0 •Vậytađặt điềukiện: xCqw ∞∞ = = Điềukiện đóthỏamãnkhichọn: −1 KCBRAB=−⎡ −1 ⎤ VF ⎣ ()⎦ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 70 Electrical Engineering - Automatic Control
  71. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.3 Các cấutrúcmở rộng củahệ ĐK trạng thái liên tục b) Kếthợphệ ĐK trạng thái với ĐK có hồitiếpvector biếnra Khi w = 0, z = 0 ta có: Bằng khâu lọc đầuvàoKVF ta không thể cảithiện được uRqKCqKy()tt=− () −PI () tt + () động học, không thể khửđược nhiễu. Có thể sử dụng • ĐC trạng thái ở vòng trong cùng, kếthợpvớihồitiếp qAqBu()ttt=+ () () vector biếnravàdùngmột khâu PI (hình dưới) để khử • nhiễu, hay bù biến động tham số của đốitượng vv yxCq()tt=− () =− () t q (t0 ) • w ()t • q ()t q (t ) x (t ) ey()tt= () y khâu PI 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 71 Electrical Engineering - Automatic Control
  72. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.3 Các cấutrúcmở rộng củahệ ĐK trạng thái liên tục b) Kếthợphệ ĐK trạng thái với ĐK có hồitiếpvector biếnra(tiếp) •Môhìnhtrạng thái mở rộng của đốitượng ĐK: •Hàm ĐK trạng thái mới: ⎡⎤• ⎢⎥q()t ⎡⎤A0⎡⎤q()t ⎡⎤ B ⎡q(t)⎤ =+u t uRKCKt =− + , ⎢⎥• ⎢⎥⎢⎥ ⎢⎥() () []PI⎢ ⎥ ⎣⎦-C 0⎣⎦y ()t ⎣⎦ 0 ⎣y ()t ⎦ ⎣⎦⎢⎥y ()t •Ma trận ĐC mớicókíchcỡ (m, n+r) có thểđượcthiếtkế theo các phương pháp ở mục 3.1.2, áp dụng cho đốitượng mớivớimôhìnhtrạng thái mở rộng (n+r, n+r). •Điềukiện để tìm đượ• cthiếtkế là tính ĐK đượccủamôhìnhmở rộng. Tính ĐK đượctồntạikhi mô hình ban đầulàqAqBu()ttt=+ () ( ) ĐK được hoàn toàn và ma trận: ⎡ A0⎤ ⎢ ⎥ ⎣-C 0⎦ có hạng n + r (có rang n + r). •Trong cấutrúcmới, các thành phần tích phân I khử triệt để độ dư sai lệch ĐC. Vì vậycóthể bỏ qua khâu lọc đầuvàoKVF. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 72 Electrical Engineering - Automatic Control
  73. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.3 Các cấutrúcmở rộng củahệ ĐK trạng thái liên tục c) Hệ ĐK trạng thái có bù nhiễu •Điềukiện để có thể thựchiện Khâu bù bù: Phải đo được nhiễu. nhiễu Nhiễutácđộng vào đốitượng qua ma trận E (n, m). Việc bù đượcthựchiệnbằng ma Đốitượng trậnbùKAz. • q t ĐK bị nhiễu ( 0 ) qAqBu()tt=+ ()R () t • ++Butt Ez q ()t q (t ) x (t ) z ( ) ( ) •Việcthiếtkế khâu ĐC trạng thái không thay đổi. Nhiễu bị triệt tiêu khi: Buz (tt)+= Ez( ) 0 Khâu ĐC •Ma trậnbùKAz có dạng: trạng thái −1 TT KBBBEAz =−( ) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 73 Electrical Engineering - Automatic Control
  74. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.3 Các cấutrúcmở rộng củahệ ĐK trạng thái liên tục d) Hệ ĐK trạng thái sử dụng khâu quan sát (QS) trạng thái Khi không thểđocácbiếntrạng q (t0 ) Đốitượng ĐK thái, ta phải dùng khâu QS • q ()t q (t) x (t ) Luenberger vớicấu trúc ở hình bên phải để tính các biến đó. Điềukiện: đốitượng ĐK phải bảo đảm tính quan sát được. •Môhìnhtrạng thái của đối tượng và của khâu QS: ⎪⎧ • ⎪ q (t0 ) x (t ) ⎪qAqBu()ttt=+ () () • ⎨⎪ ⎪ • q ()t q (t) ⎪ ⎩⎪qAqBuKx()tttt=++ () () () x (t ) •Mô hình củasaisố QS: ⎧ ⎪qqq(ttt) =−( ) ( ) ⎪ ⎨ • • • ⎪ q (t) Khâu QS trạng thái ⎩⎪qqq(ttt) =−=−( ) ( ) ( AKCq) ( t) Luenberger 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 74 Electrical Engineering - Automatic Control
  75. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở 3.1.3 Các cấutrúcmở rộng củahệ ĐK trạng thái d) Hệ ĐK trạng thái sử dụng khâu quan sát (QS) trạng thái (tiếp) •Ma trận K đượcthiếtkế sao cho các giá trị riêng củama trận(AKC− ) có thành phầnthựcâm. Việc thiếtkế theo phương pháp gán cựcchỉ có thể thựchiệnkhiđốitượng là QS đượctoànphần. •Khi sử dụng vector q ( t ) để ĐK ta có: •Vậymôhìnhhệ thống tổng thể là: • ⎡⎤ uRq(tt) =− ( ) ⎢⎥q ()t ⎡⎤ABR− BR ⎡q ()t ⎤ = ⎢ ⎥ • ⎢⎥• ⎢⎥ ⎣⎦0AKC− ⎣⎢q ()t ⎦⎥ ⇒=−qABRqBRq()ttt[]() + () ⎣⎦⎢⎥q ()t ⎡⎤sI−−( A BR) − BR ⎢⎥ ⎢⎥StateController:NsSC () •Vớiphương trình đặctính: NsG ()= det= 0 ⎢⎥0IAKCs −−() ⎢⎥ ⎣⎦Observer: NsO () •Vậy: NsGSCO( ) = N( sNs) ( ) =−−⋅−−=det⎡⎤⎡⎤⎣⎦⎣⎦ sIABR( ) det s IAKC( ) 0 Phương trình đặctínhmớichothấyrõ: ĐiểmcựccủavòngQS khônghề di chuyểnvị trí điểm cựccủa vòng ĐC. Việcgánđiểmcực cho hai vòng ĐC và QS có thể thựchiệnhoàntoànđộc lậpvới nhau (nguyên lý phân ly, Separation Principle). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 75 Electrical Engineering - Automatic Control
  76. 3. ĐK có phảnhồitrạng thái 3.1 Ôn lạicáckiếnthứccơ sở Chú ý mục 3.1: Những sinh viên muốn ôn lại kiến thức cơ sở một cách tốt hơn sẽ không thể bỏ qua chuỗi ví dụ minh họa (không bắt buộc) sau đây. 1. Ví dụ 3.1.1: Kiểm tra tính ĐK và QS được của khâu PT2 2. Ví dụ 3.1.2: Thiết kế khâu ĐC trạng thái theo phương pháp gán cực 3. Ví dụ 3.1.3: Thiết kế hệ ĐK trạng thái có khâu lọc đầu vào 4. Ví dụ 3.1.4: Thiết kế hệ ĐK trạng thái kết hợp hồi tiếp đầu ra 5. Ví dụ 3.1.5: Thiết kế khâu QS trạng thái cho đối tượng SISO 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 76 Electrical Engineering - Automatic Control
  77. 3. ĐK có phảnhồitrạng thái 3.2 Mô hình trạng thái gián đoạn 3.2.1 Mô hình ⎪⎧qqkkk+1 =+Φ Ηu ⎨⎪ Mục 1.3.2c) đãxâydựng mô hình trạng thái gián đoạnchocácđốitượng ⎪ ⎩⎪ xCqDukkk=+ ĐK vớibảnchất liên tục (hình dưới: đốitượng MIMO) như bên cạnh: ΦΦ==()TeAT T ΗΗ==()TdT∫ Φ ()ννBH; () 0 −1 ⎡ ⎤ =−AIB⎣⎢Φ(T ) ⎦⎥ •Khi đốitượng ĐK là hệ SISO: ⎪⎧qqhkkk+1 =+Φ u ⎨⎪ ⎪ T ⎩⎪ xdukkk=+cq T ΦΦ==()TeAT ; hh == () T∫ Φ ()νν d b 0 −1 ⎡ ⎤ hA()TT=−⎣⎢Φ () Ib⎦⎥ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 77 Electrical Engineering - Automatic Control
  78. 3. ĐK có phảnhồitrạng thái 3.2 Mô hình trạng thái gián đoạn 3.2.2 Chuyểnhệ tọatrạng thái cho mô hình Tương tự mục 3.1.1a), ta có thể thựchiện phép chuyểnhệ tọa độ T chomôhìnhtrạng thái gián đoạnnhằmthuđượcmôhìnhmớivớinhững đặc điểmthuậnlợi cho quá trình thiếtkế bộ ĐK hay bộ QS. •Định nghĩa vector trạng thái mới: qTq=⇒= qTq−1 kkkk •Xét thời điểmsauđây 1 chu kỳ: qTqqTqTHu=⇒=+Φ kk++11kkk+1 ⇒=qTTqTHuΦ −1 + kk+1 k Φ H •Phương trình đầura: xCqDuCTqDu=+=−1 + kkk k k C •Thay thế vàomôhìnhban đầu: ΦΦ===TT−−11;; H THCCTD ; D ⎪⎧qqHu=+Φ ⎪ kk+1 k •Môhìnhtrangtháimới: ⎨⎪ ⎪xCqDu=+ ⎩⎪ kkk Chú ý: Trong thựctiễntacũng có thể thựchiện phép chuyểnhệ tọa độ trạng thái cho mô hình liên tục trước, sau đómớithựchiệngiánđoạn hóa theo phương pháp đã trình bầy ở mục 1.3.2c). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 78 Electrical Engineering - Automatic Control
  79. 3. ĐK có phảnhồitrạng thái 3.3 Tính ĐK được, QS đượcvàcácdạng chuẩn 3.3.1 Tính điềukhiển đượcvàdạng chuẩn điềukhiển •Một đốitượng MIMO mô tả bởilàqqkkk+1 =+Φ Ηu ĐK được hoàn toàn khi và chỉ khi: Có thểđưa đốitượng chuyểntừ trạng thái ban đầubấtkỳ q(0) tớitrạng thái cuối cùng q(N) sau đúng N chu kỳ trích mẫu T. •Để bảo đảm điều đó, ma trận ĐK (n, n m) QC phảicóhạng n. TứclàQC phảichứa n vector cột độclậptuyến tính. Với: ⎡ ΦΦ n−1 ⎤ QC = ⎣ΗΗ,,, Η⎦ −1 •Chuyển sang dạng chuẩn ĐK khi đốitượng là ĐK được: TQ= C 3.3.2 Tính quan sát đượcvàdạng chuẩn quan sát •Một đốitượng MIMO mô tả bởivàcóvectorqqkkk+1 =+Φ Ηu biến ⎡ C ⎤ xCq= rakk là QS được hoàn toàn khi và chỉ khi: Có thể xác định được ⎢ CΦ ⎥ trạng thái ban đầubấtkỳ q(0) sau mộtlượng hữuhạnchukỳ trích mẫu T, ⎢ ⎥ QO = khi ở thời điểmthứ k biếtvector biếnvàouk và đo được vector biếnraxk. ⎢ ⎥ •Để bảo đảm điều đó, ma trậnQS (n r, n) Q phảicóhạng n. TứclàQ ⎢ ⎥ O O CΦn−1 phảichứa n vector hàng độclậptuyến tính. Với: ⎣⎢ ⎦⎥ −1 •Chuyển sang dạng chuẩn QS khi đốitượng là QS được: TQ= O 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 79 Electrical Engineering - Automatic Control
  80. 3. ĐK có phảnhồitrạng thái 3.3 Tính ĐK được, QS đượcvàcácdạng chuẩn 3.3.3 Dạng chuẩn Jordan (chuẩn modale, chuẩn đường chéo) Điềukiện: Đốitượng là ĐK và QS được, có n giá trị riêng khác nhau λ1, λ2, , λn với n vector riêng độclập e1, e2, , en. •Từđóthuđượcmôhìnhdạng chuẩn Jordan (còn gọilàchuẩn modale, chuẩn đường chéo), cho phép thiếtkế bộ ĐK gán các điểmcực không tương tác lẫn nhau. ⎪⎧qqMHu=+Λ −1 ⎪=+⎪ kk+1 k ⎪⎧qqHuΛ ⎪ H ⎪ kk+1 k ⎨⎨⎪⎪⇒=với: qMq−1 ⎪⎪xCMqDu=+ xCqDu=+ k k ⎪⎪⎪kk k ⎩⎪ kkk ⎩⎪ C ⎡λ 00 ⎤ •Trong đó: ⎢⎥1 ⎢⎥00λ Mee===⎡⎤,,, e ;ΛΦΦ⎢⎥2 M−1 M ⎣⎦12 n ⎢⎥ −1 ⎢⎥T T ⎢⎥ ⎣⎢ 00 λn ⎦⎥ Chú ý: Vớicácđốitượng kỹ thuậtmàtacóthể chỉ ra đượcý nghĩacủatừng điểmcực đốivớitừng đặc tính kỹ thuậtcụ thể, ta có thể tác động tớimột đặc tính nhất định mà không ảnh hưởng tớicácđặc tính khác nhờ thiết kế modale, cho phép chỉ di chuyểnduynhất điểmcựctương ứng. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 80 Electrical Engineering - Automatic Control
  81. 3. ĐK có phảnhồitrạng thái 3.3 Tính ĐK được, QS đượcvàcácdạng chuẩn 3.3.4 Tìm mô hình chuẩn ĐK, chuẩnQScủa đốitượng SISO từ hàm truyền đạt −1 •Mô hình truyền đạt của đốitượng Xz() bbz+++−−1 bzm Bz() Gz==01 m = SISO không trễ (với đốitượng có S () −−1 m −1 Uz() 1+++az1 am z A()z quán tính giá trị b0 = 0): •Mô hình trạng thái gián đoạn của ⎧qqh=+Φ u ⎪ kkk+1 đốitượng SISO (với đốitượng có ⎨ ⎪ T quán tính giá trị d = 0): ⎩⎪ xdukkk=+cq ⎡⎤01 0 ⎡⎤0 ⎡b ⎤ •Dạng chuẩn ĐK: ⎢⎥⎢⎥ ⎢ m ⎥ (chỉ số C: Controllability) ⎢⎥ ⎢⎥ ⎢ ⎥ Φ ===⎢⎥;;hc⎢⎥ ⎢ ⎥ CCC⎢⎥⎢⎥ ⎢ ⎥ Dạng chuẩn ĐK có vector ĐK hC đặcbiệt đơn ⎢⎥00 1 ⎢⎥0 ⎢b2 ⎥ giản. Đây là dạng rấtthuậnlợikhithiếtkế bộ ĐK. ⎢⎥⎢⎥ ⎢ ⎥ ⎣⎦−−aamm−11 − a ⎣⎦1 ⎣ b1 ⎦ •Dạng chuẩnQS: ⎡⎤⎡⎤00 −a b ⎡⎤0 ⎢⎥⎢⎥m m ⎢⎥ (chỉ số O: Observability) ⎢⎥⎢⎥⎢⎥ 10 −am−1 bm−1 0 Dạng chuẩn QS có vector đầurac đặcbiệt đơn Φ = ⎢⎥⎢⎥;;hc==⎢⎥ O O ⎢⎥⎢⎥OO⎢⎥ giản. Đây là dạng rấtthuậnlợikhithiếtkế bộ QS. ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎣01 −a1 ⎦⎣⎦b1 ⎣1⎦ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 81 Electrical Engineering - Automatic Control
  82. 3. ĐK có phảnhồitrạng thái 3.4 Cấutrúccơ bảntrênkhônggiantrạng thái q •Vòng ĐC khép kín sẽ có hàm ĐK và k +1 qk phương trình chuyểntrạng thái như sau: z−1I uRqkk= − MIMO :qHRqkk+1 =−[]Φ ⎡⎤Φ T Φ SISO :qhrqkk+1 =−⎣⎦ •Có thể tìm bộ tham số ĐC bằng phương pháp gán cựctrêncơ sở phương trình −R đặctínhsau: nn MIMO: det⎡⎤zIHR−−ΦΦ =zz − ; SISO: det ⎡⎤ z Ihr −−T = zz − ⎣⎦()()∏∏ii⎣⎦()() ii==11 •Trường hợp đặcbiệt: Khi đặttấtcả các điểmcực zi tạigốctọa độ (dùng định lý Cayley-Hamilton, mục 3.1.1a) ta sẽ thu được đặc tính của khâu ĐC kiểu Dead – Beat (mục2.3.3). •Khâu ĐC kiểu Dead – Beat trên không gian trạng thái thường có đặc điểmnhậythamsố. Đồng thời, biên độ của đạilượng ĐK uk khá lớn. •Thông thường, không nên đặttấtcả mọi điểmcựctạigốctọa độ. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 82 Electrical Engineering - Automatic Control
  83. 3. ĐK có phảnhồitrạng thái 3.5 Mộtsố dạng mở rộng 3.5.1 Hệ ĐK trạng thái có lọc đầuvào •Mô hình hệ như sau: •Ở trạng thái xác lập, khi w = const: ⎪⎧qHRqHKwkkVFk+1 =−[Φ ] + ⎪⎧(IHRqHKw−+Φ ) ∞ = VF ⎨ qqqkk+∞1 == ⇒⎨ ⎩⎪ xCqkk= ⎩⎪xCq∞∞= −1 −1 •VậytacóKVF: KCIHRH=+−⎡ Φ ⎤ VF ⎣ ()⎦ 3.5.2 Hệ ĐK trạng thái có ĐC đầuratheoluậtPI KP Bằng việckếthợp yk qk +1 qk xk −1 ĐC trạng thái với K I z I vòng ĐC ngoài sử dụng khâu PI ta có z−1I Φ thể theo đuổicác yk+1 mục tiêu thiếtkế nhưởmục 3.1.3b. −R 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 83 Electrical Engineering - Automatic Control
  84. 3. ĐK có phảnhồitrạng thái 3.5 Mộtsố dạng mở rộng 3.5.2 Hệ ĐK trạng thái có ĐC đầuratheoluậtPI •Vector đầuracủa khâu I đượcviếtnhư sau: yykk= −1111+− wx kk ⇒ y k+++ =+ yw k k − x k yCqyC= −+−Φ Η u •Khi wk = vk = 0 ta có: kkkk+1 ⎡⎤qqkk+1 ⎡ Φ 0⎤⎡⎤ ⎡⎤ Η •Môhìnhtrạng thái mở rộng có dạng: ⎢⎥=+⎢ ⎥⎢⎥ ⎢⎥ uk ⎣⎦yykk+1 ⎣−−CIΦ ⎦⎣⎦ ⎣⎦ CΗ •Từđótathuđược vector ĐK: ⎡qk ⎤ uRKCKkPI=−⎣⎦⎡⎤() + , ⎢ ⎥ ⎣yk ⎦ 3.5.3 Hệ ĐK trạng thái có bù nhiễu ⎪⎧qqkkkk+1 =++Φ ΗuEv •Cho trướclàđốitượng có nhiễu đo đượcnhư sau: ⎨⎪ ⎪ ⎩⎪ xCqkk= •Tác động của nhiễu vk tới qk+1 sẽ bị triệt tiêu nếutabùbởimộtvector sauđây: uKvvAvk(k ) = với: 1 TT− KHHHEAv =−( ) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 84 Electrical Engineering - Automatic Control
  85. 3. ĐK có phảnhồitrạng thái 3.5 Mộtsố dạng mở rộng 3.5.4 Hệ ĐK trạng thái sử dụng khâu QS trạng thái •Từ sơđồcấu trúc bên ta viếthệ phương trình sau: qk +1 q xk k ⎪⎧qqHu=+Φ I z ⎪ kkk+1 ⎨ ⎪qqHuKx=++Φ k Đốitượng ĐK ⎩⎪ kk+1 k Φ ⇒=qKCqHuKxkk+1 (Φ− ) ++kk •Mô hình củasailệch xk trạng thái có dạng: qqqkk++11=−=k+1 (Φ− KCq) k Khâu QS qk +1 qk trạng thái I z Luenberger xk Phảithiếtkế K sao cho mọi điểm Φ cựccủa(Φ−KC) đềunằm trong đường tròn đơnvị. Nguyên lý Separation có hiệulựcgiống như qk trường hợphệ liên tục. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 85 Electrical Engineering - Automatic Control
  86. 3. ĐK có phảnhồitrạng thái Chú ý chương 3: Sinh viên cần hiểu và tự mình tính toán kiểm tra lại các ví dụ sau đây. 1. Ví dụ 3.3.1: Sự phụ thuộc vào chu kỳ trích mẫu T của tính ĐK và QS được 2. Ví dụ 3.3.2: Xây dựng QC để kiểm tra tính ĐK được của các đối tượng quán tính bậc 1, 2 và 3 3. Ví dụ 3.3.3: Xây dựng QO để kiểm tra tính QS được của các đối tượng quán tính bậc 1, 2 ở dạng chuẩn ĐK 4. Ví dụ 3.3.4: Thiết kế khâu ĐC kiểu Dead – Beat cho đối tượng I2 (mục 3.4) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 86 Electrical Engineering - Automatic Control
  87. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.1 Ảnh hưởng củasố hóa (lượng tử hóa) biên độ 4.1.1 Nguyên nhân gây sai số lượng tử hóa Lượng tử hóa biên độ: 1. Có thể xuấthiện trong: khâu ADC, đơnvị xử lý trung tâm (CPU), khâu DAC. 2. Có thể gây nên: sai lệch tĩnh, dao động giá trị (bang-bang), đặcbiệt khi bề rộng củaWordxử lý không đủ lớn. 3. Có thểđượcbỏ qua đốivới chếđộtín hiệulớn (quá trình quá độ), nhưng khó có thể bỏ qua ở chếđộtín hiệunhỏ (dao động quanh điểmlàmviệc) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 87 Electrical Engineering - Automatic Control
  88. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.1 Ảnh hưởng củasố hóa (lượng tử hóa) biên độ 4.1.1 Nguyên nhân gây sai số lượng tử hóa a) Nhậpsố liệudạng analog: Đặc tính phi tuyến bậc thang đầu tiên ở hình thuộc trang trước Ví dụ: Trích mẫu tín hiệuy nằm trong dải0 10V, sauđósố hóa nhờ khâu ADC vớibề rộng word là WL (word length), độ phân giải Δ (resolution) và dảigiátrị NR (number range) thu được. •Dải giá trị (thập phân): Bề rộng word W L 7 8 10 12 15 NR2=−WL 1 [bit] Dảigiátrị NR 127 255 1023 4095 32767 •Độ phân giải: Độ phân giải Δ 0,00787 0,00392 0,00098 0,00024 0,00003 111 Δ= = ≈ Độ phân giải Δ [%] 0,787 0,392 0,098 0,024 0,003 NR 2WL− 1 2 WL Ví dụ: Số hóa dải điện áp 10V=10000mV với bề rộng từ 7 15bit, lượng tửđiện áp (độ phân giải điện áp) có thể biểu diễn được Δ = 78,7 0,305mV. Nếu dải điện áp đó ứng với dải nhiệt độ 100oC, độ phân giải là Δ = 0,787 0,003oC. •L là số nguyên lần lượng tử Δ đãchia điện áp y: yQ =ΔL;L = 0,1,2,,NR •Số dư δy <Δđược làm tròn lên, tròn xuống, hoặc cắt bỏ: yy= Qy+δ •Sai số lượng tử hóa δ : –Khi làm tròn: −≤0,5δ Δ≤ 0,5 y ( y )R –Khi cắt bỏ: 01≤Δ<δ ( y )C 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 88 Electrical Engineering - Automatic Control
  89. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.1 Ảnh hưởng củasố hóa (lượng tử hóa) biên độ 4.1.1 Nguyên nhân gây sai số lượng tử hóa b) Đơnvị xử lý trung tâm (Central Processing Unit): Tín hiệu (yQ)AD do khâu ADC đưa tới thường được CPU xử lý với bề rộng word WLCPU lớn hơn. Các thuật toán ĐK tuyến tính gồm các bước: ek=yk( ) ( ) − wk( ) •Tính sai lệch ĐC: QQ( )AD Q •Tính đáp ứng ĐC (hàm ĐK): ukQ1QQQ()=− puk1 ( − ) − − pμ ( k −μ ) +r0Q e Q( k) + +rν Q e Q ( k −ν) Do bề rộng word WLCPU của CPU là hữu hạn, sẽ xuất hiện sai số lượng tử hóa các giá trị sau đây: •Giá trịđặt (set points): wkQ ( ) •Đại lượng ĐK: uki,i=1,2, Q ()− •Tham sốĐK: p,riQ iQ ⎪⎫ ⎬⎪,i=0,1,2, •Các tích số: pu k−− i,re k i⎪ iQ Q() iQ Q ()⎭⎪ •Tổng các tích số: ukQ ( ) Đối với CPU dấu phẩy tĩnh, độ phân giải Δ được xác định −⋅≤≤⋅0,8388608 2−128 L 0,8388607 2 127 như mục a). Khi là dấu phẩy động, nếu là CPU 16 bit, thường sử dụng nhiều words. Ví dụ: số L = M.2E, được −⋅≤≤⋅0,24651902 10−39 L 0,14272476 10 39 biểu diễn bởi 2 words loại 16 Bit, trong đó 7 bit cho số −38 mũ E, 23 bit cho giá trị M. Phạm vi giá trị L sẽ là: Δ≈10 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 89 Electrical Engineering - Automatic Control
  90. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.1 Ảnh hưởng củasố hóa (lượng tử hóa) biên độ 4.1.1 Nguyên nhân gây sai số lượng tử hóa c) Xuấtsố liệudạng analog: Tương tự khâu nhập số liệu dạng analog, sai số lượng tử hóa của khâu xuất cũng phụ thuộc vào bề rộng word. Khâu DAC cũng gây nên một đường đặc tính phi tuyến dạng bậc thang. d) Kết luận: •Đãxuất hiện nhiều khâu phi tuyến trong toàn bộ vòng ĐC số. Việc khảo sát ảnh hưởng của chúng đối với vòng ĐC là cực kỳ khó khăn. •Về cơ bản tồn tại ba loại nguyên nhân sai số chính sau đây: –Lượng tử hóa các biến (làm tròn số các biến ĐC và ĐK trong ADC, DAC và CPU) –Lượng tử hóa các tham số (làm tròn số các tham sốĐK) –Lượng tử hóa các kết quả trung gian của thuật toán ĐK (làm tròn số các tích) •Đối với hệ thống ĐK số, có thể xẩy ra các trường hợp sau: –Vòng ĐC „vẫn“ ổn định do tác động của lượng tử hóa là nhỏ. Khi bị đẩy ra khỏi trạng thái cân bằng ta có: limek( ) ≈ 0 k→∞ –Khi bị đẩy ra khỏi trạng thái cân bằng sẽ xuất hiện sai số tĩnh: limek( )≠ 0 k→∞ –Khi giá trịđặt luôn biến động, sẽ xuất hiện hiện tượng „tạp âm lượng tử hóa“, còn gọi là „tạp âm làm tròn số“. –Xuất hiện dao động dạng bang-bang với chu kỳ M: limek( )=≠ lim ek( +M) 0 kk→∞ →∞ 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 90 Electrical Engineering - Automatic Control
  91. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.1 Ảnh hưởng củasố hóa (lượng tử hóa) biên độ 4.1.2 Hiệu ứng lượng tử hóa các biến a) Tạp âm lượng tử hóa: •Theo mục 4.1.1a): Tín hiệu digital yQ gồm có tín hiệu analog y, xếp chồng với tạp âm δ, phân bốđều như hình bên yQ (k=) y(kk)−δ( ) ∞ •Kỳ vọng của „tạp âm lượng tử hóa“: –Khi làm tròn: Epd{}δδδδ()k0==∫ () −∞ –Khi cắt bỏ: E{δ(k2)} =Δ ∞ 2 σδδδδ22=−⎡⎤Epdk12 =Δ •Phương sai của cả 2 trường hợp trên: δ ∫ ⎣⎦{}() () −∞ •Nhận xét: Nếu tạp âm (ồn trắng) này xuất hiện trong khâu ADC, nó sẽ có tác dụng như tín hiệu nhiễu ngẫu nhiên n(k) vào đại lượng ĐC với phương sai không thể suy giảm bằng công cụĐC. Nhiễu sẽ gây nên các biến động của đại lượng ĐK với biên độ lớn hơn 1 lượng tử của ADC (xem ví dụ 4.1.1). b) Sai lệch tĩnh và dao động bang-bang: Sai lệch tĩnh và dao động do lượng tử hóa trong khâu ADC có biên độ tối thiểu 1 lượng tử Δ (xem ví dụ 4.1.2, 4.1.3). Việc giảm hệ số khuếch đại có thể góp phần khử dao động bang-bang. Để khảo sát ta thường dùng công cụ mô phỏng. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 91 Electrical Engineering - Automatic Control
  92. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.1 Ảnh hưởng củasố hóa (lượng tử hóa) biên độ 4.1.3 Hiệu ứng lượng tử hóa các tham số •Ảnh hưởng củathamsốđược làm tròn số đốivớihệ thống - kể cả CPU dấuphẩytĩnh – là nhỏ và có thể bỏ qua, trừ trường hợpthamsố quá bé (ví dụ: có kích cỡ chỉ vài lượng tử). •Nếucầnthiết, có thể sử dụng các phương pháp phân tích độ nhậythamsố để khảosát. 4.1.4 Hiệu ứng lượng tử hóa các kếtquả tính trung gian a) Sai lệch tĩnh và dao động bang-bang: –Trong thuật toán ĐK, kếtquả tính trung gian là tích giữa các hệ số trọng lượng (tham số ĐK) và các biến (sai lệch ĐC, hay đạilượng ĐK). Nguyên nhân gây sai số lượng tử hóa là: Cả các thừasố của phép nhân lẫnkếtquả nhân đềubị làm tròn. qQ=Δ+δδ; eE =Δ+ Với: Q, E là số nguyên lần lượng tử Δ đãchia qe tham số q, biến e; sai số làm tròn là δ , δ 2 q e qe=Δ+Δ+Δ+ QE Qδδδδ E eqqe ≈0 –Nếusaisố làm tròn δq, δe là độclậpvề mặtthống kê và có 22 22222 phương saiσδ =Δ 12 , đốivới sai số do làm tròn thừasố ta có: σσ1 ≈+Δ(QE) δ δ =Δ−QE2 QE Δ –Sai số do làmtròntíchsố là: QE ( )Q σσσ22222222≈+Δ⎡11QE +⎤ ≈+⎡ qe +⎤ –Phương sai số củasaisố cuối cùng là: δδδqe ⎣⎢ ( )⎦⎥ ⎣ ⎦ Nhận xét: Công thứcphương sai cho thấy, khi q và e có kích cỡ lớn, sai số sẽ chủ yếubị gây nên bởiviệc làm tròn các thừasố của phép nhân. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 92 Electrical Engineering - Automatic Control
  93. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.1 Ảnh hưởng củasố hóa (lượng tử hóa) biên độ 4.1.4 Hiệu ứng lượng tử hóa các kếtquả tính trung gian (tiếp) a) Sai lệch tĩnh và dao động bang-bang (tiếp): (xem ví dụ 4.1.4) •Chú ý, việc làm tròn cho từng tích riêng rẽ, hay sau khi tính tổng tích lũy, cũng có ý nghĩa quyết định tớisaisố. Ví dụ: Nếu làm tròn riêng rẽ cho thuậttoántìmhàm ĐK ở mục 4.1.1b) và sai số lượng tử của các tham số là δpui, δrei khi tính các tích piu(k-i), rie(k-i), sai số cuối cùng sẽ là: δδupupurere(kk)=−10( −1) − − δμδδνμν( k −) +( k) + +( k − ) μ ν 22 2 vớiphương sai: σσδδu=+∑∑ pui σ δ rei ii==10 Nhậnxét:Phương sai sẽ tăng theo số lượng phép nhân củatổng tích lũyvàđốivớicácthuậttoán ĐK bậccaocó thể lớnhơnphương sai do lượng tử hóa trong khâu ADC gây nên. b) Vùng chết: 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 93 Electrical Engineering - Automatic Control
  94. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.1 Các phương pháp mô phỏng Hình 2 Nguyên lý Software-in-the-Loop Hình 1 Nguyên lý mô phỏng Off-line Mã nguồn ĐC (C, assembler) được thử trên mô hình Offline. Hoặc mã C chạy trực tiếp, Xây dựng và tối giản mô hình đối tượng, xác định tham số hoặc sử dụng một phần mềm mô phỏng mạch phần cứng. Qua đókiểm tra chức năng của của mô hình để từ đóthiết kế thuật toán ĐC. Diễn biến thiết bị ĐC (chưa cần chế tạo) trên mô hình ĐTĐK. Ví dụ: Các chức năng của vi điều thời gian trên mô hình không đúng vớidiễn biến thực. khiển (biến đổi AD, DA, điều chế bề rộng xung, cấu trúc ngắt vv ) Hình 3 Nguyên lý Hardware-in-the-Loop Hình 4 Nguyên lý Control Prototyping (mô phỏng thờigianthực, real-time simulation) Sử dụng môi trường phát triển thời gian thực, ghép với ĐTĐK thật, hay với Sử dụng hardware để mô phỏng vòng ĐC. RTS cho phép kiểm tra chức năng mô hình vật lý thu nhỏ (khi đối tượng là thiết bị có công suất, kích cỡ lớn). phần cứng, và giúp đánh giá khả năng của phần mềm ĐC dưới điều kiện thời Thử nghiệm trên thiết bị thật cho phép kiểm tra ảnh hưởng của các hiệu ứng gian thực. Điều này cực kỳ có ý nghĩa khi phải kiểm tra các thiết bị hỗn hợp không thể mô tả được bằng mô hình toán. nhiều phần tử cơ-điện tử-phần mềm (hệ thống mechatronic). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 94 Electrical Engineering - Automatic Control
  95. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.1 Các phương pháp mô phỏng (tiếp) Mô phỏng thờIgianthực dùng Card DS1102 củadSPACE Hình bên giới thiệu ví dụ khi sử dụng môi trường thiết kế trên nền MATLAB & Simulink với phần cứng có vi xử lý tín hiệu (Digital Signal Processor: DSP) của tập đoàn Texas Instruments. Sơ đồ chỉ ra rõ ràng: kết hợp với MATLAB và các Toolbox, ta có thể tiến hành các bước: –Bước 1: Mô phỏng Offline để bước đầu xác định tham số của thuật toán ĐC. –Bước 2: Bổ xung thêm các khối xuất/nhập dữ liệu (ví dụ: các khối ADC hoặc DAC) vào sơ đồ cấu trúc vòng ĐC. –Bước 3: Sử dụng C-compiler tạo mã C để nạp xuống card hardware, cài xen với hệ thống phần mềm điều khiển theo ngắt. Chú ý: Thư viện MLIB cung cấp các chức năng điều khiển phần cứng từ môi trường MATLAB (sử dụng chương trình Cockpit). Thư viện MTRACE có các chức năng giúp thu thập số liệu từ phần cứng. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 95 Electrical Engineering - Automatic Control
  96. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.2 Mô phỏng bằng MATLAB & Simulink a) Mô phỏng bằng các lệnh trựctiếptừ Toolbox của MATLAB: •Nhóm lệnh khai báo mô hình gián Khaibáomôhìnhgiánđoạncủahệ LTI đoạn(thuộc Control Toolbox) tf (num,den,Ts) Hàm truyền đạt: Vector các hệ số của Ví dụ: đathứctử số num, mẫusố den Mô hình TF: zpk (z,p,k,Ts) Biểu đồ điểm không - điểmcực: Vector >> h = tf ([1 -0.5],[1 1 -2],0.01) các điểm không z, điểmcực p, hệ số Transfer function: khuếch đại k z - 0.5 ss (A,B,C,D,Ts) Mô hình trạng thái: Ma trậnhệ thống A, đầuvàoB, đầuraC, liên thông D z^2 + z - 2 frd (answer,freq,unit,Ts) Mô hình dữ liệu đặctínhtầnsố: Đáp Sampling time: 0.01 ứng tầnsố answer, vector tầnsố freq, unit là đơnvị (thứ nguyên củatầnsố Mô hình ZPK: rad/s (mặc định) hoặcHz >> h = zpk (0.5,[-2 1],1,0.01) (unit=‘Units’,’rad/s’) Zero/pole/gain: Ts Chu kỳ trích mẫu củahệ gián đoạn (z-0.5) không khai Ts: Mô hình liên tục về thời gian Ts = -1 Mô hình gián đoạn về (z+2) (z-1) thời gian, chu kỳ trích Sampling time: 0.01 mẫuchưaxácđịnh 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 96 Electrical Engineering - Automatic Control
  97. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.2 Mô phỏng bằng MATLAB & Simulink a) Mô phỏng bằng các lệnh trựctiếptừ Toolbox của MATLAB (tiếp): •Nhóm lệnh chuyển đổi giữa hai loạimôhìnhgiánđoạnvàliên tục(thuộc Control Toolbox) Ví dụ: >> sysc = tf(1,[1 1]) Transfer function: 1 s + 1 >> sysd = c2d (sysc,2) Transfer function: 0.8647 z - 0.1353 Chuyển đổi giữa hai hệ LTI liên tục và gián đoạn Sampling time: 2 >> sysdd =d2d (sysd,0.7) c2d(sysc,Ts,method) Chuyểnhệ liên tục thành hệ gián đoạn Transfer function: d2c(sysd,method Chuyểnhệ gián đoạn thành hệ liên tục 0.5034 d2d(sys,Ts Thay đổichukỳ trích mẫu method Phương pháp gián đoạnhóa: z - 0.4966 ’zoh’, ’foh’, ’tustin’, Sampling time: 0.7 ’prewarp’, ’matched’ >> step (sysc,'r-',sysd,'c-',sysdd,'g ') 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 97 Electrical Engineering - Automatic Control
  98. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.2 Mô phỏng bằng MATLAB & Simulink a) Mô phỏng bằng các lệnh trựctiếptừ Toolbox của MATLAB (tiếp): •Nhóm lệnh lọc số FIR (Finite Impulse Response, thuộc Signal Processing Toolbox) Công thức tổng quát: Bộ lọc FIR và hàm cửa sổ −−11 − yz( ) Bz( ) order limitfrequency window 1 == fir1( , , ) Thiếtkế bộ lọcFIR Hz() −−11 xz() Az() (lọc thông thấp) filter(num,den,data) Lọcsố liệu bbzbz++++−−12 bz −m 12 3m+ 1 filtfilt(num,den,data) Lọcsố liệucóhiệu = −−12 −n aazaz12++++ 3 azn+ 1 chỉnh pha freqz(num,den,points,samplingfreq) Đáp ứng tần số gián a112y()k=+−++− bxk () bxk (1 ) bm+ 1 xk ( m ) đoạn −−−−−ayk21( 1) an+ yk( n) Ví dụ: % T¹o tËp sè liÖu x cã chiÒu dμI % length(x)=101 >> t = 0:0.005:0.5; >> x = 5 + 8*sin(2*pi*8*t) + 4*cos(2*pi*33*t); % ThiÕt kÕ bé läc FIR >> Bw = fir1(20,0.2,hamming(20+1)); % Dïng Bw ®Ó läc x theo 2 c¸ch: filter % vμ filtfilt >> x_f = filter(Bw,1,x); >> x_ff = filtfilt(Bw,1,x); 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 98 Electrical Engineering - Automatic Control
  99. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.2 Mô phỏng bằng MATLAB & Simulink a) Mô phỏng bằng các lệnh trựctiếptừ Toolbox của MATLAB (tiếp): •Nhóm lệnh lọc số IIR (Infinite Impulse Response, thuộc Signal Processing Toolbox) Bộ lọc IIR Công thức tổng quát: butter(order,limitfreq) Lọc Butterworth order ripple limitfreq ay( k) =+−+ bxk( ) bx( k 1) cheby1( , , ) Lọc Tschebyscheff Typ 1 112 cheby2(order,ripple,limitfreq) Lọc Tschebyscheff Typ 2 +−bxkmm+1 () ellip(order,ripple,attenuation,limitfreq) Lọc Elliptic (Cauer) filter(num,den,data) Lọcsố liệu aa2+1== n =0 filtfilt(num,den,data) Lọcsố liệucóhiệuchỉnh pha freqz(num,den,points,samplingfreq) Đáp ứng tần số gián đoạn Ví dụ: >> t = 0.01:0.01:1; >> x = 5 + 8*sin(2*pi*8*t) + 4*cos(2*pi*40*t); >> [B,A] = butter(4,20/50);%ThiÕt kÕ bé läc IIR >> x_f = filter(B,A,x); %Läc tÝn hiÖu x >> x_ff = filtfilt(B,A,x); %Läc tÝn hiÖu x cã bï pha >> plot(t,x,'g-',t,x_f,'r-',t,x_ff,'b:'); >> axis([0 0.5 -10 30]); >> title('Discrete Filter','FontSize',12); >> xlabel('Time [s]','FontSize',12); >> legend('non-filtered','IIR filter','IIR filtfilt'); 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 99 Electrical Engineering - Automatic Control
  100. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.2 Mô phỏng bằng MATLAB & Simulink b) Mô phỏng bằng sơđồcấutrúccủa Simulink: Unit Delay Khối Unit Delay có tác dụng trích mẫu tín hiệuvàovàcấtgiữ giá trị thu đượctrongmộtchukỳ trích mẫu. Vì vậy, khốicóđặc điểmnhư mộtphầntử cơ bảncủa các hệ gián đoạn. Khốicóthể đượcsử dụng như một khâu quá độ từ tầnsố trích mẫuthấp sang tầnsố trích mẫu cao. Discrete-Time Integrator Khối Discrete-Time Integrator (tíchphângiánđoạn) về cơ bảncũng giống như khối Integrator (tích phân) liên tục. Bên cạnh chu kỳ trích mẫu ta còn phảichọnchomỗikhốithuật toán tích phân (tích phân Euler tiến, tích phân Euler lùi hay tích phân hình thang). Sau khi đãchọnthuật toán tích phân, biểutượng (Icon) củakhốilạithayđổitương ứng. Discrete Filter (scalar) −−11 Khối Discrete Filter mô tả một khâu yz( ) Bz( ) bbzbz++++−−12 bz −m −1 ===12 3m+ 1 Hz() −−11 −−12 −n lọcsố có hàm truyền đạtnhư bên: xz( ) Az( ) aazaz12++++ 3 azn+ 1 Các hệ số của đathứctử số và mẫusốđược khai báo theo trình tự số mũ của z giảmdần, bắt đầu từ hệ số của z0. Discrete Transfer Function (scalar) Khối Discrete Transfer Function có đặc điểmgiống khối Discrete Filter và đượcmôtả bởihàm truyền đạtbên: mm−−12 m Bz( ) bz12++++ bz bz 3 bm+ 1 Hz()==nn−−12 n A(zazazaz) 12++++ 3 an+ 1 Các hệ số củahaiđathứctử số và mẫusốđược khai báo theo trình tự số mũ của z giảmdần, bắt đầutừ m (tử số) và n (mẫusố). 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 100 Electrical Engineering - Automatic Control
  101. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.2 Mô phỏng bằng MATLAB & Simulink b) Mô phỏng bằng sơđồcấutrúccủa Simulink (tiếp): Discrete Zero-Pole (scalar) Trong khối Discrete Zero-Pole, thay vì phảikhaibáocáchệ số, ta khai báo điểmcực-điểm không củahàmtruyền đạtvàmộthệ số khuếch đại. Discrete State Space Khối Discrete State Space mô tả mộthệ thống gián đoạnbằng mô hình trạng thái. Khối có đặc điểmsử dụng giống như khối State Space của các hệ liên tục. Zero-Order Hold Khối Zero-Order Hold trích mẫutínhiệu đầu vào và giữ giá trị thu được đếnthời điểmtríchmẫu tiếp theo. Nên sử dụng khối Zero-Order Hold trong các hệ trích mẫuchưacómộttrongcáckhối gián đoạn đã đượcmôtảởtrên (tứclànhững khốicósẵnkhâugiữ chậmbậc 0). Khi chọnbuớc tích phân cứng, có thể sử dụng khối Zero-Order Hold tại các vị trí chuyểntừ tầnsố trích mẫucao sang tầnsố trích mẫuthấphơn. Chú ý: Mộthệ thống số kỹ thuậtthường sử dụng nhiềuchukỳ trích mẫu khác nhau (gọilàhệ có chu kỳ hỗnhợp), và cầnphải đượclưuý đặcbiệtkhimôphỏng. Hệ lai là các hệ có chứa cả hai thành phần liên tụcvàgiánđoạn. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 101 Electrical Engineering - Automatic Control
  102. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.2 Thiếtkế hệ thống bằng máy tính 4.2.2 Mô phỏng bằng MATLAB & Simulink b) Mô phỏng bằng sơđồcấutrúccủa Simulink (tiếp): Ví dụ: Mô phỏng khâu ĐC 2 chiều (2- dimensional, khâu MIMO) dùng để ĐC vector dòng stator is của động cơ xoay chiều 3 pha. Sơđồcấu trúc khâu ĐC digital Sơđồmô hình Simulink 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 102 Electrical Engineering - Automatic Control
  103. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.1 Phân loạivi xử lý §¬n vÞ xö lý trung t©m (CPU) Kh©u tÝnh to¸n Kh©u ®iÒu khiÓn a) Khái niệm“vi xử lý” Chữ “vi“ trong khái niệm trên có cội nguồn Thanh ghi Gi¶i m· sè liÖu §¬n vÞ sè lÖnh từ chữ “micro“, ký hiệu là “μ“, có nghĩa là häc vµ l«gic “một phần triệu“ hoặc “rất nhỏ“. Vi xử lý Thanh ghi (ALU) §Õm ch­¬ng (Microprocessor) có nghĩa là “bộ xử lý rất ®Þa chØ tr×nh nhỏ“, ký hiệu là “μP“. •Khâu tính toán: gồm có đơn vị số học và Bus trªn phiÕn lôgic (Arithmetic Logic Unit: ALU), các thanh ghi số liệu và địa chỉ. §Öm Bus §Öm Bus §Öm Bus •Khâu điều khiển: gồm có bộ giải mã lệnh sè liÖu ®iÒu khiÓn ®Þa chØ và bộ đếm chương trình. Kh©u ®Öm •Khâu đệm: với các bộ đệm (thường là ba trạng thái: Tri-State), ghép nối Bus trên Hình trên: Cấu trúc bên trong củamột μP phiến của μP với các Bus điều khiển, số liệu và địa chỉ nằm bên ngoài. Chú ý: Để sử dụng trong các hệ thống ĐK số, μPsẽ phải đượcbổ sung thêm các phầntử ngoạivi, phục vụ việc nhúng (embed) μPvàomôitrường thiếtbị. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 103 Electrical Engineering - Automatic Control
  104. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.1 Phân loạivi xử lý (tiếp) Vi xö lý b) Khái niệm“vi xử lý tín hiệu” §iÒu khiÓn Vi xử lý tín hiệu = Digital Signal Processing (DSP). Bus sè liÖu Được thiết kế để tăng tốc độ xử lý, tính tổng tích lũy: Bus ®Þa chØ ∑()axii a) •Bản chất DSP: là μP có thêm thanh ghi ACC (với bề rộng gấp đôi bề rộng của Bus) và bộ nhân cứng. Nhí ch­¬ng tr×nh Nhí sè liÖu •Nhiều thao tác trong 1 lệnh: DSP cho phép thực hiện các thao tác (làm tròn, dịch trái/phải vv ) đó Vi xö lý đồng thời với nhân và tích lũy chỉ trong một nhịp 1 lệnh duy nhất. 2 2 1 Ø Program Ø Data Bus u u h h Ö •Cấu trúc Bus: Bus trên phiến (on-chip) đượcthực Ö c Bus c i i l l a a Þ Þ è hiệntheo cấu trúc Harward. è ® s ® s s s s s §iÒu khiÓn u u u u B B B b) B Hình bên: Cấu trúc Bus a) kiểu Nhí ch­¬ng tr×nh Nhí sè liÖu Von-Neumann; b) kiểu Harward trªn chip trªn chip 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 104 Electrical Engineering - Automatic Control
  105. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.1 Phân loạivi xử lý (tiếp) c) Khái niệm“vi điềukhiển” Vi điều khiển = μP (hoặc DSP) + ngoại vi + ngắt không cần thủ tục C166-Core 16 up to t 128 KByte Data r o RAM P Chú ý: μC được phân biệt CPU l ROM/ a Instr./Data Data u Flash D 2 KByte với μP là do các đặc điểm: 16 EPROM 32 a) có thêm các phần tử ngoại PLL vi cơ bản trên phiến XTAL OSC PEC (peripheries on-chip) và b) có External Instr./Data ) W atchdog s e s Interrupt Controller cơ chế ngắt không cần thủ tục s 36 ext. IR e r d 2KB d A 16 / Interrupt Bus ngắt. Điều này cho phép nâng a XRAM t a Peripheral Data D 16 X cao tốc độ tính toán, tăng độ U M N O N Multi Funktional Sync. t USART PW M Module i GPT1 GPT2 CAPCOM1, 2 tin cậy, đồng thời giảm giá 6 b 10-Bit - Channel t 6 r 1 External Bus, 0 r r 1 (SPI) PT 1 e e o ( T2 ADC m m i XBUS Control, i T T P 32 PT 2 8 S thành của hệ thống. 5 * CS Logic 16 Channels U ASC SSC T3 T5 Channels PT 3 B 0 7 8 r r X t PT 4 e e r T4 T6 m m i BRG BRG i T T o 16 P 4 t r o Port 1 Port 5 Port 3 Port 2 Port 8 Port 7 167 Hình bên: Cấu trúc chi tiết của μC 8 P 16 Bit loại SAB C167 (Siemens) 16 16 16 16 8 8 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 105 Electrical Engineering - Automatic Control
  106. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.1 Phân loạivi xử lý (tiếp) Data RAM Program ROM / d) Khái niệm “DSP Controller” Flash Event M anager 544W x16 16kW x16 3 Timers Cách định nghĩa μC như ta đã A (15-0) 12 PW M nêu ở mục 4.3.1c cũng có thể Outputs 9 Compare được áp dụng đối với DSP. Outputs Dead Band Thay vì viết công thức: D (15-0) Logic μC = μP + ngoại vi IGR CPU Interface + ngắt không cần thủ tục 16-Bit T-register 16-Bit 16 x 16 M ultiply Barrel 10-Bit ADC Shifter 32-Bit P-register ta viết: 10-Bit ADC Shift L (0, 1, 4, -6) μC = DSP + ngoại vi 32-Bit ALU W atchdog Timer + ngắt không cần thủ tục 32-Bit Accumulator Shift L (0-7) SPI = DSP Controller 8 Auxiliary Registers 8 Level H/W Stack SCI 2 Status Registers Three I/O Ports Repeat Count 8-Bit Hình bên: Sơ đồ khối của DSP Controller ký hiệu TMS 320C/F240 (Texas Instruments) 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 106 Electrical Engineering - Automatic Control
  107. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.2 Khái quát về nhiệmvụ thiếtkế Minh họanhiệmvụ thiếtkế thông qua ví dụ cụ thể: Hệ thống ĐK số cho truyền động điệnxoaychiều 3 pha. Cầnphải làm rõ các vấn đề cụ thể: •Hardware: Lựachọnvi xử lý (hệ 1 hay nhiều μP, μC)? Cầnnhững ngoại vi gì và với tính năng thế nào? •Software: Công cụ, quy trình và quản lý (management) phát triển? Chuẩnbị lập trình (thuật toán, chuẩn hóa, thư viện, test)? 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 107 Electrical Engineering - Automatic Control
  108. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.3 Hardware: Yêu cầu đốivớivi xử lý •Chọn hệ 1 vi xử lý (Single Processor System) khi Hardware chỉ phải thực hiện các bài toán ĐK. Nhiệm vụ truyền thông với môi trường xung quanh ở mức rất hạn chế. •Chọn hệ 2 vi xử lý (Double Processor System) khi Hardware không chỉ phải thực hiện các thuật toán thời gian thực mà còn phải cho phép tích hợp vào một môi trường công nghệ tựđộng (ví dụ: nhờ Field Bus, ĐK qua giao diện vv ) phức hợp. •Vi xử lý/các vi xử lý cần phải có khả năng đảm đương các nhiệm vụ của ngoại vi (ví dụ: ADC, điều chế, đo tốc độ quay vv ) tới mức tối đa. Vì vậy, nếu là hệ 2 vi xử lý thì 1 sẽ phải được chọn là μC. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 108 Electrical Engineering - Automatic Control
  109. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.3 Hardware: Yêu cầu đốivớivi xử lý (tiếp) Ví dụ về một hệ 2 vi xử lý, bao gồm DSP loại TMS 320C25 (Texas Instruments) và μC loại SAB C167 (Siemens). •Tận dụng khả năng tính toán của DSP để thực hiện các thuật toán thời gian thực phức hợp. •Tận dụng ngoại vi phong phú của μC để ghép với môi trường công nghệ. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 109 Electrical Engineering - Automatic Control
  110. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.4 Hardware: Yêu cầu đốivới ngoạivi(trên cơ sở ví dụởmục 4.3.2) •Phải có đơn vị PWM (Puls Width Modulation) với độ phân giải thời gian bé nhất (ví dụ: 50ns của SAB C167, TMS 320C/F240) phục vụđiều chế vector điện áp. • Đo dòng stator với độ phân giải 10 12bit. Đối với truyền động chất lượng cao phải là 12bit-ADC với tốc độ biến đổi <10μs. • Đo tốc độ quay bằng IE cần có các thanh ghi CAP/COM. Đo bằng Resolver thường phải có mạch phụ bên ngoài. • Đo điện áp UDC bằng 10-12bit-ADC. •Mạch phụđểghép Field Bus. • Mạch theo dõi/bảo vệ mạch điện tử công suất và động cơ. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 110 Electrical Engineering - Automatic Control
  111. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.5 Software: Công cụ phát triển và công tác quảnlý a) Các bước chuẩn bị viết Software • Tập hợp tất cả các công thức cần tính (các thuật toán) cùng với các tham số của đối tượng công nghệ (ví dụ: số liệu động cơ). • Chuẩn hóa các công thức cần tính, xác định kích cỡ của dữ liệu (bề rộng word) cũng như độ chính xác của dữ liệu (số bits sau dấu phẩy). •Môtả chu trình tính bằng lưu đồ thuật toán (flow chart). • Xác định chương trình chính, chương trình con và chương trình ngắt (chương trình con theo mảnh thời gian hay theo mức ưu tiên khác nhau). • Xác định các module thư viện. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 111 Electrical Engineering - Automatic Control
  112. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.5 Software: Công cụ phát triển và công tác quảnlý b) Chuẩn bị công cụ phát triển (môi trường phát triển) • Editor: Trình soạn thảo mã nguồn • C Compiler: Trình biên dịch mã nguồn C • Assembler: Trình thông dịch hợp ngữ • Linker, Locater: Hai trình ghép, định vị các modules. Đôi khi là 1 trình với 2 options khác nhau. • Librarian: Trình quản lý thư viện • Format Converter: Trình đảo định dạng • Object/Hex Converter: Trình đảo mã chạy/mã hexa • Debugger: Trình gỡ rối • Emulator: Thiết bị mô phỏng chip • Target System: Hardware • EPROM Burner: Máy nạp EPROM 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 112 Electrical Engineering - Automatic Control
  113. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.5 Software: Công cụ phát triển và công tác quảnlý c) Chu trình và công cụ phát triển Mục tiêu cần đạt: • Đạt tính năng theo yêu cầu của bài toán •Cấu trúc rõ ràng, dễ hiểu •Dễ bảo dưỡng, cập nhật, nâng cấp •Dễ sử dụng lặp lại Biện pháp nhằm đạt mục tiêu: • Định nghĩa rõ ràng giao diện giữa các modules •Lập trình bằng ngôn ngữ bậc cao (chủ yếu là C) •Cấu trúc thư mục và modules rõ ràng •Sử dụng Make Files trong quá trình tạo Code 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 113 Electrical Engineering - Automatic Control
  114. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.5 Software: Công cụ phát triển và công tác quảnlý d) Các nguyên tắcthựchiện 1) Các bước phát triển •Xâydựng danh mụcyêucầu đốivới Software (theo nhu cầu củathị trường) •Khẳng định khả năng đáp ứng danh mục yêu cầu • Phân tích phương án, phân tích hệ thống trên cơ sở Hardware đãthiếtkế • Xác định các modules phầnmềmcầnsoạnthảo • Soạnthảo các modules cụ thể • Thử nghiệm riêng rẽ từng module (Test Programs, Debugger, Emulator, Hardware-in-the-Loop-Test) • Thử nghiệmtổng thể trên thiếtbị 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 114 Electrical Engineering - Automatic Control
  115. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.5 Software: Công cụ phát triển và công tác quảnlý d) Các nguyên tắcthựchiện(tiếp) 2) Quản lý Files và ký hiệu •Cấutrúcthư mục trên PC: Source Files, .obj Files, vv • Tên Files: mang ý nghĩadễ hiểu • Tên ký hiệu, tên biến: mang ý nghĩadễ hiểu, khai báo tậptrungđể dễ quảnlý(tránhlãngphíbộ nhớ, tăng tốc độ) 3) Quảnlývàtạophiênbản 4) Cấutrúccủatừng module • Tên module •Giaodiệnvới bên ngoài module •Lịch sử của module •Giaodiệnvới bên trong module •Môtả module •Chứcnăng của module 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 115 Electrical Engineering - Automatic Control
  116. 4. Thực hiện kỹ thuậthệ thống ĐK số 4.3 Thiếtkế hệ thống vi điềukhiển 4.3.5 Software: Công cụ phát triển và công tác quảnlý d) Các nguyên tắcthựchiện(tiếp) 5) Con đường từ thuậttoán(Algorithms) tớIphầnmềm(Software) •Tậphợptấtcả các phương trình cần tính (thuật toán) và các tham số của đốitượng ĐK. •Chuyểntấtcả phương trình và tham số sang dạng không có thứ nguyên (Normalizing, chuẩn hóa). •Khisử dụng μP, μC hay DSP dấuphẩytĩnh: Xác định các hệ số trượt (Scaling) đốivớithamsố và biến. Không thựchiện động tác này đốivớidấuphẩy động. • Xây dựng lưu đồ (Flowchart). • Phân thành chương trình mẹ, chương trình con hay thủ tụcngắt (Interrupt Routines). • Xác định thư viện. 21 August 2011 Hon.-Prof. Prof. Dr.-Ing. habil. Nguyễn Phùng Quang 116 Electrical Engineering - Automatic Control