Bài giảng Kết cấu thép - Chương 4: Trạng thái ứng suất
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Kết cấu thép - Chương 4: Trạng thái ứng suất", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_ke_cau_thet_chuong_4_trang_thai_ung_suat.pdf
Nội dung text: Bài giảng Kết cấu thép - Chương 4: Trạng thái ứng suất
- CHƯƠNG 4 - TRẠNG THÁI ỨNG SUẤT Gvc- Ths. Lê Hoàng Tuấn
- 1. KHÁI NIỆM VỀ TTỨS TẠI MỘT ĐIỂM y 1.1.Định nghĩa TTỨS: P1 P2 TTƯS tại một điểm là p tập hợp tất cảû những C P4 ứng suất trên các mặt P3 z đi qua điểm ấy. x
- 1. KHÁI NIỆM VỀ TTỨS TẠI MỘT ĐIỂM 1.2. Biểu diễn TTƯS tại một điểm y sy +Ba ứng suất pháp: tyx tyz s , s , s txy x y z t +Sáu ứng suất tiếp: zy sx t , t , t , t , t , t . tzx t xy yx xz zx yz zy sz xz x z
- 1. KHÁI NIỆM VỀ TTỨS TẠI MỘT ĐIỂM 1.3. Định luật đối ứng của ứng suất tiếp t t t t
- 1. KHÁI NIỆM VỀ TTỨS TẠI MỘT ĐIỂM 1.4. Mặt chính, phương chính, II ứng suất chính,phân loại TTƯS s2 Mặt chính- Mặt không có s1 s1 Phương chính- Pháp tuyến I của mặt chính , I, II, III. s3 Ứng suất chính- ứ/s trên III mặt chính : s1> s2 > s3
- 1. KHÁI NIỆM VỀ TTỨS TẠI MỘT ĐIỂM Phân loại TTƯS II II s2 s2 II s1 s1 s1 s1 s1 s1 I I I s3 III III III TTỨS KHỐI TTỨS PHẲNG TTỨS ĐƠN
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.1. Cách biểu diễn – Quy ước dấu Cách biểu diển: sy y tyx y sy tyx txy s x sx txy sx x s txy x x tyx sy z sy
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.1. Cách biểu diễn – Quy ước dấu y sy Quy ước dấu: tyx + s 0 khi gây kéo txy sx + t 0 khi làm cho phân tố s txy x quay thuận kim đồng hồ x tyx sy
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.2.Ứng suất trên mặt cắt nghiêng bất kỳ: Mặt cắt nghiêng pháp tuyến u, với (x,u)= > 0 khi quay ngược kim đồng hồ kể từ truc x sy y tyx u y sy tyx txy v sx s su txy x sx x t sx xy tuv x tyx sy z sy
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.2.Ứng suất trên mặt cắt nghiêng bất kỳ: Tính su ,tuv . y u v su y su ds sy txy x t uv x dy sy tuv tyx z dz tyx dx sx sx
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH y y u su v su ds txy x sy t tuv sy uv dy x tyx tyx dz sx z dx sx s dzds- s dzdy.cos +t dzdy.sin * U=0 u x xy - -s dzdx.sin + t dzdx.cos =0 * V=0 y yx
- x y sin 2 cos2 uv 2 xy 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH y su Tính su ,tuv . txy x sy tuv tyx sx x y x y cos2 sin2 * U=0 u 2 2 xy (1) x y * V=0 uv sin2 xy cos2 2
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH y Ứng suất trên mặt cắt su pháp tuyến v: v txy x Xét mặt nghiêng có pháp s tuv tuyến v, vuông góc mặt y tyx có pháp tuyến u. Thay thế sx u bằng ( + 90) vào (1) v su x x y x y sv cos2 sin2 tuv v 2 2 xy tvu Và u v x y sv
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.3 Ứng suất chính - Phương chính - 0 Ứng suất pháp cực trị 0 +90 Mặt chính là mặt I có ứng suất tiếp = 0 III s1 x s3 0 x y sin2 cos2 0 0 uv 2 xy 2 s3 xy s1 tan2 o (2) x y Đây là p/t xác định phương chính, mặt chính.
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH Có 2 mặt chính vuông góc 0 0 +90 I Ứùng suất chính III s1 x s3 0 x y 1 2 2 max 1,3 x y 4 xy (3) min 2 2 s3 s1 Ứùng suất chính cũng là ứng suất pháp cực trị d 2 xy vì u 0 tan 2 dz x y
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH III 2.3 Ứng suất tiếp cực trị: 1350 Pháp tuyến mặt có t , t : max min tma s I d x uv ( )cos2 2 sin2 0 450 d x y xy tan 2 x y t 2 xy min 1 tan2 o So sánh với (2) o k45 tan 2 o Có 2 mặt có tmax , tmin hợp với 2 mặt chính 1 góc 450.
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH III 1350 2.3 Ứng suất tiếp cực trị: tma s I 1 2 2 x max x y 4xy (4) 450 min 2 tmin
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.4 Các trường hợp đặc biệt: 1- TTỨS phẳng đặc biệt: t Các ứng suất chính : s s t 1 2 4 2 ; 0 (5) 1,3 max, min 2 2 2
- 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.4 Các trường hợp đặc biệt: s1 t 2- TTỨS trượt thuần túy: s3 Các ứng suất chính : t 1,3 max, min ; 2 0 (6) s3 s1 Hai phương chính được xác định theo (2): k tan 2 o o 4 2 Những phương chính xiên góc 450 với trục x và y.
- 1 3 max,min 2 2 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP GIẢI TÍCH 2.4 Các trường hợp đặc biệt: s 3- Phân tố chính: 3 Ứng tiếp cực trị : s1 s1 1 3 (7) 13 max 2 s3
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ 3.1 Cơ sở của phương pháp: u y sy Từ p/t tính su và tuv v tyx x y x y su txy u cos2 xy sin2 sx 2 2 t sx xy tuv x y x uv sin 2 xy cos2 tyx 2 sy Chuyển (sx+sy)/2 sang phải, bình phương 2 vế, 2 2 công lại x y 2 x y 2 u uv xy 2 2
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ 3.1 Cơ sở của phương pháp: u y sy s s t Với: c x y ; v yx 2 su txy 2 sx 2 sx sy 2 t sx R txy xy tuv 2 x tyx 2 2 2 sy u c uv R Đây là p/t đường tròn tâm C (c,0), bán kính R trong hệ trục (s,t): Vòng tròn Mohr ứng suất
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ 3.1 Cơ sở của phương pháp: s u t y y v tyx R s su txy sx O C t sx xy tuv C x tyx sy
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ 3.2 Cách vẽ vòng Mohr: t Vẽ hệ trục (s,t); P. t R xy E s Điểm E (0, sx), F (0, sy), . . O F C Tâm C là trung điểm của E, F sy sx Vẽ Cực P (sy, txy ) Vòng tròn tâm C, qua P là vòng Mohr.
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ tmax t t u max s 3.3 Ứng suất trên tuv u M tuv P mặt nghiêng- t xy 2 Tìm u ; uv : R 2 Từ cực P vẽ Pu // u O B 1 A s F G E C s điểm M max smin Hoành độ M: OG= su smin tmin Tung độ M: GM= tuv su sy t sx min smax = s1
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ tmax t t I u max s 3.4 Ứng suất tuv u M tuv P max ; min: t xy 2 R OA= s = s 2 max 1 O B 1 A s F C G E OB= smin = s2 3.5 Ứng suất smin s max ; min: min J tmin su CI= t sy t max CJ= tmin sx min smax = s1
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ 3.5 Các trường hợp đặc biệt 1.TTƯS phẳng đặc biệt t P Có hai ứng suất chính t A s s1 và s3 B O F C E t smax s s smin s t s3 smax = s1
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ 3.5 Các trường hợp đặc biệt 2.TTƯS trượt thuần túy t P Có hai ứng suất chính t s1 =- s3 = t B O A s t C s3 s1 t s3 =-t s1=t
- 3 . TTỨS TRONG BÀI TOÁN PHẲNG- PHƯƠNG PHÁP ĐỒ THỊ 3.5 Các trường hợp đặc biệt t 3.Phân tố chính tmax s3 tmax s1 s1 B O A s P C s 3 tmin Ứùng suất tiếp cực trị tmin s1 s3 t s s 1,3 2 3 1
- 4 . SƠ LƯỢC VỀ TTỨS KHỐI Tổng quát tại bất kỳ II s điểm có TTỨS khối 2 Ứng suất pháp lớn nhất s1 s1 s1 , s2 , s3 I s Ứng suất tiếp lớn nhất 3 III 1 3 (7) 13 max 2
- 4 . SƠ LƯỢC VỀ TTỨS KHỐI s2 Thực vậy s Xét các mặt song song s1 t s2 các phương chính I, II, III s t s3 Các ứng suất trên các s1 mặt nầy có thể khảo sát s3 s như trong bài tóan phẳng 2 s t 1 s3 s
- 4 . SƠ LƯỢC VỀ TTỨS KHỐI 1,3 2,3 Các ứng suất tiếp lớn 1,2 nhất trên các mặt nầy biểu diển bằng các bán kính O của các vòng Mohr 1 3 3 Dễ thấy ứng suất tiếp 2 lớn nhất trong phân tố 2 1 1 3 (7) 13 max 2
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG 4.1 Định luật Hooke tổng quát ' 1- Liên hệ ứng suất pháp và biến dạng dài s s, TTƯS đơn: E '' s ' " E
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG 4.1 Định luật Hooke tổng quát 1- Liên hệ ứng suất pháp II s2 và biến dạng dài TTƯS khối: s1 s1 I 1 1 ( 1 ) 1 ( 2 ) 1 ( 3 ) s3 1 2 2 III 1 E E E 1 ( ) 1 E 1 2 3
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG 4.1 Định luật Hooke tổng quát 1- Liên hệ ứng suất pháp II s2 và biến dạng dài TTƯS khối: s1 s1 1 I 1 1 ( 2 3 ) E s3 1 ( ) III 2 E 2 3 1 1 ( ) 3 E 3 1 2
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG 4.1 Định luật Hooke tổng quát y 1- Liên hệ ứng suất pháp sy t và biến dạng dài t yx 2-Lieân heä giöõa öùng suaát tieáp vaø bieány zdaïng goùc txy TTỨS tổng quát: tzy s 1 x ( ) x x y z tzx t E sz xz x 1 z ( ) y E y z x 1 ( ) z E z x y
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG t 4.1 Định luật Hooke tổng quát 2- Liên hệ ứng suất tiếp t và biến dạng góc: TTỨS trượt thuần túy: G -Biến dạng góc (góc trượt) . E G - là môđun đàn hồi trượt, và G 2(1 ) Thöù nguyeân cuûa G laø [löïc/(chieàu daøi)2] vaø ñôn vò thöôøng duøng laø N/m2 hay MN/m2.
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG 4.1 Định luật Hooke khối V0 = da1. da2. da3 V1 =(da1+ da1).(da2+ da2). (da3+ da3). II Biến dạng thể tích tương đối s2 V1 Vo 1 2 3 s1 s1 Vo 1 2 I 1 2 3 E s3 III
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG 4.1 Định luật Hooke khối Biến dạng thể tích tương đối 1 2 1 2 3 II E s2 Tổng ứng suất pháp 1 + 2 +3 s1 s1 1 2 I s E 3 III
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG II s2 4.1 Định luật Hooke khối 1 2 s s1 1 E I Nhận xét 1: s3 Nếu vật liệu có hệ số Poisson III = 0,5 ( cao su), thì luôn bằng không tức là thể tích không đổi dưới tác dụng của ngoại lực. 1 2 3 tb 3 3
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG II s2 4.1 Định luật Hooke khối 1 2 s s1 1 E I Nhận xét 2: s3 Thay các ứng suất chính III bằng ứng suất trung bình stb 1 2 3 tb 3 3 1 2 1 2 Thì s s s không đổi 1 E tb tb tb E
- 5 . LIÊN HỆ GIỮA ỨNG SUẤT VÀ BIẾN DẠNG Ý nghĩa của nhận xét 2: II s2-stb II st II s2 b s -s st 1 tb s st 1 b I I b I s st 3 III III s3-stb III b Đổi thể tích Đổi thể tích Không đổi thể tích Đổi hình dáng Không đổi hình dáng Đổi hình dáng
- 6. THẾ NĂNG BIẾN DẠNG ĐÀN HỒI Thanh kéo hay nén ( chương 3): TTƯS đơn, chỉ có s TNBDĐH riêng : u 2 s s TTỨS khối, s II 1,2,3 s2 TNBDĐH riêng: s1 s1 u 1 1 2 2 3 3 I 2 2 2 s3 III
- 6. THẾ NĂNG BIẾN DẠNG ĐÀN HỒI II s thay 1,2,3 từ đ/l HooKe 2 1 2 2 2 u 2 s1 s1 2E 1 2 3 1 2 2 3 3 1 I Phân tích TNBDĐH u thành : s3 Thế năng biến đổi thể tích utt III Thế năng biến đổi hình dáng uhd u = utt + uhd
- 6. THẾ NĂNG BIẾN DẠNG ĐÀN HỒI II s2-stb II st II s2 b s -s st 1 tb s st 1 b I I b I s st 3 III III s3-stb III b Đổi thể tích Đổi thể tích Không đổi thể tích Đổi hình dáng Không đổi hình dáng Đổi hình dáng u utt uhd
- 6. THẾ NĂNG BIẾN DẠNG ĐÀN HỒI Thế năng biến đổi hình dáng 1 u s2 s2 s2 s s s s s s hd 3E 1 2 3 1 2 2 3 1 3 Thế năng biến đổi hình dáng của TTỨS đơn: 1 u s 2 hd 3E