Giáo trình Quản trị mạng và các thiết bị mạng

pdf 319 trang hapham 1680
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Quản trị mạng và các thiết bị mạng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_quan_tri_mang_va_cac_thiet_bi_mang.pdf

Nội dung text: Giáo trình Quản trị mạng và các thiết bị mạng

  1. Giáo trình Quản trị mạng và các thiết bị mạng
  2. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng PHẦN I KHÁI QUÁT VỀ CÔNG NGHỆ MẠNG 7 Chương 1: Tổng quan về công nghệ mạng máy tính và mạng cục bộ 7 Mục 1: Mạng máy tính 7 I. Lịch sử mạng máy tính 7 II. Giới thiệu mạng máy tính 10 I.1. I.Định nghĩa mạng máy tính và mục đích của việc kết nối mạng 10 I.1.1. Nhu cầu của việc kết nối mạng máy tính 10 I.1.2. Định nghĩa mạng máy tính 10 I.2. Đặc trưng kỹ thuật của mạng máy tính 10 I.2.1. Đường truyền 11 I.2.2. Kỹ thuật chuyển mạch: 11 I.2.3. Kiến trúc mạng 12 I.2.4. Hệ điều hành mạng 12 I.3. Phân loại mạng máy tính 13 I.3.1. Phân loại mạng theo khoảng cách địa lý : 13 I.3.3. Phân loại theo kiến trúc mạng sử dụng 15 I.3.4. Phân loại theo hệ điều hàng mạng 15 I.4. Giới thiệu các mạng máy tính thông dụng nhất 16 I.4.1. Mạng cục bộ 16 I.4.2. Mạng diện rộng với kết nối LAN TO LAN 16 I.4.3. Liên mạng INTERNET 17 I.4.4. Mạng INTRANET 17 II. Mạng cục bộ, kiến trúc mạng cục bộ 17 II.1. Mạng cục bộ 17 II.2. Kiến trúc mạng cục bộ 18 II.2.1. Đồ hình mạng (Network Topology) 18 II.3. Các phương pháp truy cập đường truyền vật lý 21 II.3.1 Phương pháp đa truy nhập sử dụng sóng mang có phát hiện xung đột CSMA/CD (Carrier Sense Multiple Access with Collision Detection) 22 II.3.2. Phương pháp Token Bus 23 II.3.2. Phương pháp Token Ring 25 III. Chuẩn hoá mạng máy tính 26 III.1. Vấn đề chuẩn hoá mạng và các tổ chức chuẩn hoá mạng 26 III.2. Mô hình tham chiếu OSI 7 lớp 27 a) Lớp vật lý 28 b) Lớp liên kết dữ liệu 28 c) Lớp mạng 29 d) Lớp chuyển vận 29 e) Lớp phiên 29 f) Lớp thể hiện 30 2 Trung tâm Điện toán Truyền số liệu KV1
  3. Giáo trình Quản trị mạng và các thiết bị mạng
  4. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng g) Lớp ứng dụng 30 III.3. Các chuẩn kết nối thông dụng nhất IEEE 802.X và ISO 8802.X 30 Mục 2: Các thiết bị mạng thông dụng và các chuẩn kết nối vật lý 32 I. Các thiết bị mạng thông dụng 32 II.1. Các loại cáp truyền 32 II.1.1. Cáp đôi dây xoắn (Twisted pair cable) 32 II.1.2. Cáp đồng trục (Coaxial cable) băng tần cơ sở 33 II.1.3. Cáp đồng trục băng rộng (Broadband Coaxial Cable) 34 II.1.4. Cáp quang 35 II.2. Các thiết bị ghép nối 36 II.2.1. Card giao tiếp mạng (Network Interface Card viết tắt là NIC) 36 II.2.2. Bộ chuyển tiếp (REPEATER ) 36 II.2.3. Các bộ tập trung (Concentrator hay HUB) 36 II.2.4. Switching Hub (hay còn gọi tắt là switch) 37 II.2.5. Modem 38 II.2.6. Multiplexor - Demultiplexor 38 II.2.7. Router 38 III.3. Một số kiểu nối mạng thông dụng và các chuẩn 39 III.3.1.Các thành phần thông thường trên một mạng cục bộ gồm có 39 III.3.2. Kiểu 10BASE5: 40 III.3.3. Kiểu 10BASE2: 42 III.3.4. Kiểu 10BASE-T 44 III.3.5. Kiểu 10BASE-F 45 Chương 2 : Giới thiệu giao thức TCP/IP 46 I.1. Giao thức IP 46 I.1.1. Họ giao thức TCP/IP 46 I.1.2. Chức năng chính của - Giao thức liên mạng IP(v4) 50 I.2. Địa chỉ IP 50 I.3. Cấu trúc gói dữ liệu IP 53 I.4. Phân mảnh và hợp nhất các gói IP 56 I.5. Định tuyến IP 58 I.6. Một số giao thức điều khiển 60 I.6.1. Giao thức ICMP 60 I.6.2. Giao thức ARP và giao thức RARP 62 I.2. Giao thức lớp chuyển tải (Transport Layer) 65 I.2.1. Giao thức TCP 65 I.2.2 Cấu trúc gói dữ liệu TCP 65 I.2.3. Thiết lập và kết thúc kết nối TCP 67 PHẦN II 70 QUẢN TRỊ MẠNG 70 3 Trung tâm Điện toán Truyền số liệu KV1
  5. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Chương 3 : Tổng quan về bộ định tuyến 72 I. Lý thuyết về bộ định tuyến 72 I.1. Tổng quan về bộ định tuyến 72 I.2. Các chức năng chính của bộ định tuyến, tham chiếu mô hình OSI 73 I.3. Cấu hình cơ bản và chức năng của các bộ phận của bộ định tuyến 75 II. Giới thiệu về bộ định tuyến Cisco 76 II.1. Giới thiệu bộ định tuyến Cisco 76 II.2. Một số tính năng ưu việt của bộ định tuyến Cisco 78 II.3. Một số bộ định tuyến Cisco thông dụng 78 II.4. Các giao tiếp của bộ định tuyến Cisco 83 II.5. Kiến trúc module của bộ định tuyến Cisco 84 III. Cách sử dụng lệnh cấu hình bộ định tuyến 90 III.1. Giới thiệu giao tiếp dòng lệnh của bộ định tuyến Cisco 90 III.2. Làm quen với các chế độ cấu hình 94 III.3. Làm quen với các lệnh cấu hình cơ bản 99 III.4. Cách khắc phục một số lỗi thường gặp 108 IV. Cấu hình bộ định tuyến Cisco 110 IV.1. Cấu hình leased-line 110 IV.2. Cấu hình X.25 & Frame Relay 115 IV.3. Cấu hình Dial-up 134 IV.4. Định tuyến tĩnh và động 138 V. Bài tập thực hành sử dụng bộ định tuyến Cisco 146 Chương 4 : Hệ thống tên miền DNS 147 I. Giới thiệu 148 I.1. Lịch sử hình thành của DNS 148 II. DNS server và cấu trúc cơ sở dữ liệu tên miền 150 II.1.Cấu trúc cơ sở dữ liệu 150 II.2. Phân loại DNS server và đồng bộ dư liệu giữa các DNS server 155 Truyền phần that đổi (Incremental zone) 157 III. Hoạt động của hệ thống DNS 159 Họat động của DNS 160 Tự tìm câu trả lời truy vấn 161 Truy vấn DNS server 162 Hoạt động của DNS cache 165 IV.Cài đặt DNS Server cho Window 2000 166 V. Cài đặt, cấu hình dns cho Linux 175 Hướng dẫn sử dụng nslookup 182 Chương 5 : Dịch vụ truy cập từ xa và Dịch vụ Proxy 188 Mục 1 : Dịch vụ truy cập từ xa (Remote Access) 188 I. Các khái niệm và các giao thức. 188 4 Trung tâm Điện toán Truyền số liệu KV1
  6. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.1. Tổng quan về dịch vụ truy cập từ xa. 188 I.2. Kết nối truy cập từ xa và các giao thức sử dụng trong truy cập từ xa 189 I.3. Modem và các phương thức kết nối vật lý. 194 II. An toàn trong truy cập từ xa 197 II.1. Các phương thức xác thực kết nối 197 II.2. Các phương thức mã hóa dữ liệu 200 III. Triển khai dịch vụ truy cập từ xa 202 III.1. Kết nối gọi vào và kết nối gọi ra 202 III.2. Kết nối sử dụng đa luồng(Multilink) 203 III.3. Các chính sách thiết lập cho dịch vụ truy nhập từ xa 203 III.4. Sử dụng dịch vụ gán địa chỉ động DHCP cho truy cập từ xa 205 III.5. Sử dụng Radius server để xác thực kết nối cho truy cập từ xa 206 III.6. Mạng riêng ảo và kết nối sử dụng dịch vụ truy cập từ xa 208 III.7. Sử dụng Network and Dial-up Connection 211 III.8. Một số vấn đề xử lý sự cố trong truy cập từ xa. 211 IV. Bài tập thực hành. 213 Mục 2 : Dịch vụ Proxy - Giải pháp cho việc kết nối mạng dùng riêng ra Internet 221 I. Các khái niệm. 221 I.1. Mô hình client server và một số khả năng ứng dụng 221 I.2. Socket. 222 I.3. Phương thức hoạt động và đặc điểm của dịch vụ Proxy. 224 I.4. Cache và các phương thức cache 227 II. Triển khai dịch vụ proxy 230 II.1. Các mô hình kết nối mạng 230 II.2. Thiết lập chính sách truy cập và các qui tắc 233 II.3. Proxy client và các phương thức nhận thực 238 II.4. NAT và proxy server 242 III. Các tính năng của phần mềm Microsoft ISA server 2000 245 III.1. Các phiên bản 245 III.2. Lợi ích 246 III.3. Các chế độ cài đặt 247 III.4. Các tính năng của mỗi chế độ cài đặt 248 IV. Bài tập thực hành. 249 Chương 6 : Bảo mật hệ thống và Firewall 261 I. Bảo mật hệ thống 261 I.1. Các vấn đề chung về bảo mật hệ thống và mạng 261 I.1.1. Một số khái niệm và lịch sử bảo mật hệ thống 262 I.1.2. Các lỗ hổng và phương thức tấn công mạng chủ yếu 264 I.1.3. Một số điểm yếu của hệ thống 276 5 Trung tâm Điện toán Truyền số liệu KV1
  7. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.1.4. Các mức bảo vệ an toàn mạng 277 I.2. Các biện pháp bảo vệ mạng máy tính 279 I.2.1. Kiểm soát hệ thống qua logfile 279 I.2.2. Thiếp lập chính sách bảo mật hệ thống 290 II. Tổng quan về hệ thống firewall 295 II.1. Giới thiệu về Firewall 295 II.1.1. Khái niệm Firewall 295 II.1.2. Các chức năng cơ bản của Firewall 295 II.1.3. Mô hình mạng sử dụng Firewall 296 II.1.4. Phân loại Firewall 298 II.2. Một số phần mềm Firewall thông dụng 303 II.2.1. Packet filtering: 303 II.2.2. Application-proxy firewall 304 II.3. Thực hành cài đặt và cấu hình firewall Check Point v4.0 for Windows.305 II.3.1. Yêu cầu phần cứng: 305 II.3.2. Các bước chuẩn bị trước khi cài đặt: 306 II.3.3. Tiến hành cài đặt: 307 6 Trung tâm Điện toán Truyền số liệu KV1
  8. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng PHẦN I KHÁI QUÁT VỀ CÔNG NGHỆ MẠNG Chương 1: Tổng quan về công nghệ mạng máy tính và mạng cục bộ Chương này cung cấp các khái niệm, các kiến thức cơ bản nhất về mạng máy tính và phân loại mạng máy tính. Các nội dung giới thiệu mang tính tổng quan về mạng cục bộ, kiến trúc mạng cục bộ, phương pháp truy cập trong mạng cục bộ và các chuẩn vật lý về các thiết bị mạng. Đây là những kiến thức cơ bản rất hữu ích do phạm vi sử dụng của mạng cục bộ là đang phổ biến hiện nay. Hầu hết các cơ quan, tổ chức, công ty có sử dụng công nghệ thông tin đều thiết lập mạng cục bộ riêng. Các khái niệm, nội dung cơ bản trong chương 1 cần phải nắm vững đối với tất cả các học viên vì chúng sẽ được sử dụng nhiều trong các chương tiếp theo. Mục 1: Mạng máy tính I. Lịch sử mạng máy tính Internet bắt nguồn từ đề án ARPANET (Advanced Research Project Agency Network) khởi sự trong năm 1969 bởi Bộ Quốc phòng Mỹ (American Department of Defense). Đề án ARPANET với sự tham gia của một số trung tâm nghiên cứu, đại học tại Mỹ (UCLA, Stanford, . . . ) nhằm mục đích thiết kế một mạng WAN (Wide Area Network) có khả năng tự bảo tồn chống lại sự phá hoại một phân mạng bằng chiến tranh nguyên tử. Đề án này dẫn tới sự ra đời của nghi thức truyền IP (Internet Protocol). Theo nghi thức này, thông tin truyền sẽ được đóng thành các gói dữ liệu và truyền trên mạng theo nhiều đường khác nhau từ người gửi tới nơi người nhận. Một hệ thống máy tính nối trên mạng gọi là Router làm nhiệm vụ tìm đường đi tối ưu cho các gói dữ liệu, 7 Trung tâm Điện toán Truyền số liệu KV1
  9. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng tất cả các máy tính trên mạng đều tham dự vào việc truyền dữ liệu, nhờ vậy nếu một phân mạng bị phá huỷ các Router có thể tìm đường khác để truyền thông tin tới người nhận. Mạng ARPANET được phát triển và sử dụng trước hết trong các trường đại học, các cơ quan nhà nước Mỹ, tiếp theo đó, các trung tâm tính toán lớn, các trung tâm truyền vô tuyến điện và vệ tinh được nối vào mạng, . . . trên cơ sở này, ARPANET được nối với khắp các vùng trên thế giới. Tới năm 1983, trước sự thành công của việc triển khai mạng ARPANET, Bộ quốc phòng Mỹ tách một phân mạng giành riêng cho quân đội Mỹ(MILNET). Phần còn lại, gọi là NSFnet, được quản lý bởi NSF (National Science Foundation) NSF dùng 5 siêu máy tính để làm Router cho mạng, và lập một tổ chức không chính phủ để quản lý mạng, chủ yếu dùng cho đại học và nghiên cứu cơ bản trên toàn thế giới. Tới năm 1987, NSFnet mở cửa cho cá nhân và cho các công ty tư nhân (BITnet), tới năm 1988 siêu mạng được mang tên INTERNET. Tuy nhiên cho tới năm 1988, việc sử dụng INTERNET còn hạn chế trong các dịch vụ truyền mạng (FTP), thư điện tử(E-mail), truy nhập từ xa(TELNET) không thích ứng với nhu cầu kinh tế và đời sống hàng ngày. INTERNET chủ yếu được dùng trong môi trường nghiên cứu khoa học và giảng dạy đại học. Trong năm 1988, tại trung tâm nghiên cứu nguyên tử của Pháp CERN(Centre Européen de Recherche Nuclaire) ra đời đề án Mạng nhện thế giới WWW(World Wide Web). Đề án này, nhằm xây dựng một phương thức mới sử dụng INTERNET, gọi là phương thức Siêu văn bản (HyperText). Các tài liệu và hình ảnh được trình bày bằng ngôn ngữ HTML (HyperText Markup Language) và được phát hành trên INTERNET qua các hệ chủ làm việc với nghi thức HTTP (HyperText Transport Protocol). Từ năm 1992, phương thức làm việc này được đưa ra thử nghiêm trên INTERNET. Rất nhanh chóng, các công ty tư nhân tìm thấy qua phương thức này cách sử dụng INTERNET trong kinh tế và đời sống. Vốn đầu tư vào INTERNET được nhân lên hàng chục lần. Từ năm 1994 INTERNET trở thành siêu mạng kinh doanh. Số các công ty sử dụng INTERNET vào việc kinh doanh và quảng cáo lên gấp hàng nghìn lần kể từ năm 1995. Doanh số giao dịch thương mại qua mạng INTERNET lên hàng chục tỉ USD trong năm 1996 . . . Với phương thức siêu văn bản, người sử dụng, qua một phần mềm truy đọc (Navigator), có thể tìm đọc tất cả các tài liệu siêu văn bản công bố tại mọi nơi trên thế giới (kể cả hình ảnh và tiếng nói). Với công nghệ WWW, chúng ta 8 Trung tâm Điện toán Truyền số liệu KV1
  10. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng bước vào giai đoạn mà mọi thông tin có thể có ngay trên bàn làm việc của mình. Mỗi công ty hoặc người sử dụng, được phân phối một trang cội nguồn (Home Page) trên hệ chủ HTTP. Trang cội nguồn, là siêu văn bản gốc, để tự do có thể tìm tới tất cả các siêu văn bản khác mà người sử dụng muốn phát hành. Địa chỉ của trang cội nguồn được tìm thấy từ khắp mọi nơi trên thế giới. Vì vậy, đối với một xí nghiệp, trang cội nguồn trở thành một văn phòng đại diện điện tử trên INTERNET. Từ khắp mọi nơi, khách hàng có thể xem các quảng cáo và liên hệ trực tiếp với xí nghiệp qua các dòng siêu liên (HyperLink) trong siêu văn bản. Tới năm 1994, một điểm yếu của INTERNET là không có khả năng lập trình cục bộ, vì các máy nối vào mạng không đồng bộ và không tương thích. Thiếu khả năng này, INTERNET chỉ được dùng trong việc phát hành và truyền thông tin chứ không dùng để xử lý thông tin được. Trong năm 1994, hãng máy tính SUN Corporation công bố một ngôn ngữ mới, gọi là JAVA(cafe), cho phép lập trình cục bộ trên INTERNET, các chương trình JAVA được gọi thẳng từ các siêu văn bản qua các siêu liên (Applet). Vào mùa thu năm 1995, ngôn ngữ JAVA chính thức ra đời, đánh dấu một bước tiến quan trọng trong việc sử dụng INTERNET. Trước hết, một chương trình JAVA, sẽ được chạy trên máy khách (Workstation) chứ không phải trên máy chủ (server). Điều này cho phép sử dụng công suất của tất cả các máy khách vào việc xử lý số liệu. Hàng triệu máy tính (hoặc vi tính) có thể thực hiện cùng một lúc một chương trình ghi trên một siêu văn bản trong máy chủ. Việc lập trình trên INTERNET cho phép truy nhập từ một trang siêu văn bản vào các chương trình xử lý thông tin, đặc biệt là các chương trình điều hành và quản lý thông tin của một xí nghiệp. phương thức làm việc này, được gọi là INTRANET. Chỉ trong năm 1995-1996, hàng trăm nghìn dịch vụ phần mềm INTRANET được phát triển. Nhiều hãng máy tính và phần mềm như Microsoft, SUN, IBM, Oracle, Netscape, đã phát triển và kinh doanh hàng loạt phần mềm hệ thống và phần mềm cơ bản để phát triển các ứng dụng INTERNET / INTRANET. 9 Trung tâm Điện toán Truyền số liệu KV1
  11. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng II. Giới thiệu mạng máy tính I.1. I.Định nghĩa mạng máy tính và mục đích của việc kết nối mạng I.1.1. Nhu cầu của việc kết nối mạng máy tính Việc nối máy tính thành mạng từ lâu đã trở thành một nhu cầu khách quan vì : - Có rất nhiều công việc về bản chất là phân tán hoặc về thông tin, hoặc về xử lý hoặc cả hai đòi hỏi có sự kết hợp truyền thông với xử lý hoặc sử dụng phương tiện từ xa. - Chia sẻ các tài nguyên trên mạng cho nhiều người sử dụng tại một thời điểm (ổ cứng, máy in, ổ CD ROM . . .) - Nhu cầu liên lạc, trao đổi thông tin nhờ phương tiện máy tính. - Các ứng dụng phần mềm đòi hòi tại một thời điểm cần có nhiều người sử dụng, truy cập vào cùng một cơ sở dữ liệu. I.1.2. Định nghĩa mạng máy tính Nói một cách ngắn gọn thì mạng máy tính là tập hợp các máy tính độc lập (autonomous) được kết nối với nhau thông qua các đường truyền vật lý và tuân theo các quy ước truyền thông nào đó. Khái niệm máy tính độc lập được hiểu là các máy tính không có máy nào có khả năng khởi động hoặc đình chỉ một máy khác. Các đường truyền vật lý được hiểu là các môi trường truyền tín hiệu vật lý (có thể là hữu tuyến hoặc vô tuyến). Các quy ước truyền thông chính là cơ sở để các máy tính có thể "nói chuyện" được với nhau và là một yếu tố quan trọng hàng đầu khi nói về công nghệ mạng máy tính. I.2. Đặc trưng kỹ thuật của mạng máy tính Một mạng máy tính có các đặc trưng kỹ thuật cơ bản như sau: 10 Trung tâm Điện toán Truyền số liệu KV1
  12. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.2.1. Đường truyền Là thành tố quan trọng của một mạng máy tính, là phương tiện dùng để truyền các tín hiệu điện tử giữa các máy tính. Các tín hiệu điệu tử đó chính là các thông tin, dữ liệu được biểu thị dưới dạng các xung nhị phân (ON_OFF), mọi tín hiệu truyền giữa các máy tính với nhau đều thuộc sóng điện từ, tuỳ theo tần số mà ta có thể dùng các đường truyền vật lý khác nhau Đặc trưng cơ bản của đường truyền là giải thông nó biểu thị khả năng truyền tải tín hiệu của đường truyền. Thông thuờng người ta hay phân loại đường truyền theo hai loại: - Đường truyền hữu tuyến (các máy tính được nối với nhau bằng các dây cáp mạng). - Đường truyền vô tuyến: các máy tính truyền tín hiệu với nhau thông qua các sóng vô tuyền với các thiết bị điều chế/giải điều chế ớ các đầu mút. I.2.2. Kỹ thuật chuyển mạch: Là đặc trưng kỹ thuật chuyển tín hiệu giữa các nút trong mạng, các nút mạng có chức năng hướng thông tin tới đích nào đó trong mạng, hiện tại có các kỹ thuật chuyển mạch như sau: - Kỹ thuật chuyển mạch kênh: Khi có hai thực thể cần truyền thông với nhau thì giữa chúng sẽ thiết lập một kênh cố định và duy trì kết nối đó cho tới khi hai bên ngắt liên lạc. Các dữ liệu chỉ truyền đi theo con đường cố định đó. - Kỹ thuật chuyển mạch thông báo: thông báo là một đơn vị dữ liệu của người sử dụng có khuôn dạng được quy định trước. Mỗi thông báo có chứa các thông tin điều khiển trong đó chỉ rõ đích cần truyền tới của thông báo. Căn cứ vào thông tin điều khiển này mà mỗi nút trung gian có thể chuyển thông báo tới nút kế tiếp trên con đường dẫn tới đích của thông báo - Kỹ thuật chuyển mạch gói: ở đây mỗi thông báo được chia ra thành nhiều gói nhỏ hơn được gọi là các gói tin (packet) có khuôn dạng qui định trước. Mỗi gói tin cũng chứa các thông tin điều khiển, trong đó có địa chỉ nguồn (người gửi) và địa chỉ đích (người nhận) của gói tin. Các gói tin của cùng một thông báo có thể được gởi đi qua mạng tới đích theo nhiều con đường khác nhau. 11 Trung tâm Điện toán Truyền số liệu KV1
  13. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.2.3. Kiến trúc mạng Kiến trúc mạng máy tính (network architecture) thể hiện cách nối các máy tính với nhau và tập hợp các quy tắc, quy ước mà tất cả các thực thể tham gia truyền thông trên mạng phải tuân theo để đảm bảo cho mạng hoạt động tốt. Khi nói đến kiến trúc của mạng người ta muốn nói tới hai vấn đề là hình trạng mạng (Network topology) và giao thức mạng (Network protocol) - Network Topology: Cách kết nối các máy tính với nhau về mặt hình học mà ta gọi là tô pô của mạng Các hình trạng mạng cơ bản đó là: hình sao, hình bus, hình vòng - Network Protocol: Tập hợp các quy ước truyền thông giữa các thực thể truyền thông mà ta gọi là giao thức (hay nghi thức) của mạng Các giai thức thường gặp nhất là : TCP/IP, NETBIOS, IPX/SPX, . . . I.2.4. Hệ điều hành mạng Hệ điều hành mạng là một phần mềm hệ thống có các chức năng sau: - Quản lý tài nguyên của hệ thống, các tài nguyên này gồm: + Tài nguyên thông tin (về phương diện lưu trữ) hay nói một cách đơn giản là quản lý tệp. Các công việc về lưu trữ tệp, tìm kiếm, xoá, copy, nhóm, đặt các thuộc tính đều thuộc nhóm công việc này + Tài nguyên thiết bị. Điều phối việc sử dụng CPU, các ngoại vi để tối ưu hoá việc sử dụng - Quản lý người dùng và các công việc trên hệ thống. Hệ điều hành đảm bảo giao tiếp giữa người sử dụng, chương trình ứng dụng với thiết bị của hệ thống. - Cung cấp các tiện ích cho việc khai thác hệ thống thuận lợi (ví dụ FORMAT đĩa, sao chép tệp và thư mục, in ấn chung ) Các hệ điều hành mạng thông dụng nhất hiện nay là: WindowsNT, Windows9X, Windows 2000, Unix, Novell. 12 Trung tâm Điện toán Truyền số liệu KV1
  14. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.3. Phân loại mạng máy tính Có nhiều cách phân loại mạng khác nhau tuỳ thuộc vào yếu tố chính được chọn dùng để làm chỉ tiêu phân loại, thông thường người ta phân loại mạng theo các tiêu chí như sau - Khoảng cách địa lý của mạng - Kỹ thuật chuyển mạch mà mạng áp dụng - Kiến trúc mạng - Hệ điều hành mạng sử dụng Tuy nhiên trong thực tế nguời ta thường chỉ phân loại theo hai tiêu chí đầu tiên I.3.1. Phân loại mạng theo khoảng cách địa lý : Nếu lấy khoảng cách địa lý làm yếu tố phân loại mạng thì ta có mạng cục bộ, mạng đô thị, mạng diện rộng, mạng toàn cầu. Mạng cục bộ ( LAN - Local Area Network ) : là mạng được cài đặt trong phạm vi tương đối nhỏ hẹp như trong một toà nhà, một xí nghiệp với khoảng cách lớn nhất giữa các máy tính trên mạng trong vòng vài km trở lại. Mạng đô thị ( MAN - Metropolitan Area Network ) : là mạng được cài đặt trong phạm vi một đô thị, một trung tâm văn hoá xã hội, có bán kính tối đa khoảng 100 km trở lại. Mạng diện rộng ( WAN - Wide Area Network ) : là mạng có diện tích bao phủ rộng lớn, phạm vi của mạng có thể vượt biên giới quốc gia thậm chí cả lục địa. Mạng toàn cầu ( GAN - Global Area Network ) : là mạng có phạm vi trải rộng toàn cầu. I.3.2. Phân loại theo kỹ thuật chuyển mạch: Nếu lấy kỹ thuật chuyển mạch làm yếu tố chính để phân loại sẽ có: mạng chuyển mạch kênh, mạng chuyển mạch thông báo và mạng chuyển mạch gói. 13 Trung tâm Điện toán Truyền số liệu KV1
  15. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Mạch chuyển mạch kênh (circuit switched network) : Khi có hai thực thể cần truyền thông với nhau thì giữa chúng sẽ thiết lập một kênh cố định và duy trì kết nối đó cho tới khi hai bên ngắt liên lạc. Các dữ liệu chỉ truyền đi theo con đường cố định đó. Nhược điểm của chuyển mạch kênh là tiêu tốn thời gian để thiết lập kênh truyền cố định và hiệu suất sử dụng mạng không cao. Mạng chuyển mạch thông báo (message switched network) : Thông báo là một đơn vị dữ liệu của người sử dụng có khuôn dạng được quy định trước. Mỗi thông báo có chứa các thông tin điều khiển trong đó chỉ rõ đích cần truyền tới của thông báo. Căn cứ vào thông tin điều khiển này mà mỗi nút trung gian có thể chuyển thông báo tới nút kế tiếp trên con đường dẫn tới đích của thông báo. Như vậy mỗi nút cần phải lưu giữ tạm thời để đọc thông tin điều khiển trên thông báo, nếu thấy thông báo không gửi cho mình thì tiếp tục chuyển tiếp thông báo đi. Tuỳ vào điều kiện của mạng mà thông báo có thể được chuyển đi theo nhiều con đường khác nhau. Ưu điểm của phương pháp này là : - Hiệu suất sử dụng đường truyền cao vì không bị chiếm dụng độc quyền mà được phân chia giữa nhiều thực thể truyền thông. - Mỗi nút mạng có thể lưu trữ thông tin tạm thời sau đó mới chuyển thông báo đi, do đó có thể điều chỉnh để làm giảm tình trạng tắc nghẽn trên mạng. - Có thể điều khiển việc truyền tin bằng cách sắp xếp độ ưu tiên cho các thông báo. - Có thể tăng hiệu suất sử dụng giải thông của mạng bằng cách gắn địa chỉ quảng bá (broadcast addressing) để gửi thông báo đồng thời tới nhiều đích. Nhược điểm của phương pháp này là: - Không hạn chế được kích thước của thông báo dẫn đến phí tổn lưu giữ tạm thời cao và ảnh hưởng đến thời gian trả lời yêu cầu của các trạm . Mạng chuyển mạch gói (packet switched network) : ở đây mỗi thông báo được chia ra thành nhiều gói nhỏ hơn được gọi là các gói tin (packet) có khuôn dạng qui định trước. Mỗi gói tin cũng chứa các thông tin điều khiển, 14 Trung tâm Điện toán Truyền số liệu KV1
  16. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng trong đó có địa chỉ nguồn (người gửi) và địa chỉ đích (người nhận) của gói tin. Các gói tin của cùng một thông báo có thể được gởi đi qua mạng tới đích theo nhiều con đường khác nhau. Phương pháp chuyển mạch thông báo và chuyển mạch gói là gần giống nhau. Điểm khác biệt là các gói tin được giới hạn kích thước tối đa sao cho các nút mạng (các nút chuyển mạch) có thể xử lý toàn bộ gói tin trong bộ nhớ mà không phải lưu giữ tạm thời trên đĩa. Bởi vậy nên mạng chuyển mạch gói truyền dữ liệu hiệu quả hơn so với mạng chuyển mạch thông báo. Tích hợp hai kỹ thuật chuyển mạch kênh và chuyển mạch gói vào trong một mạng thống nhất được mạng tích hợp số ISDN (Integated Services Digital Network). I.3.3. Phân loại theo kiến trúc mạng sử dụng Kiến trúc của mạng bao gồm hai vấn đề: hình trạng mạng (Network topology) và giao thức mạng (Network protocol) Hình trạng mạng: Cách kết nối các máy tính với nhau về mặt hình học mà ta gọi là tô pô của mạng Giao thức mạng: Tập hợp các quy ước truyền thông giữa các thực thể truyền thông mà ta gọi là giao thức (hay nghi thức) của mạng Khi phân loại theo topo mạng người ta thường có phân loại thành: mạng hình sao, tròn, tuyến tính Phân loại theo giao thức mà mạng sử dụng người ta phân loại thành mạng : TCP/IP, mạng NETBIOS . Tuy nhiên cách phân loại trên không phổ biến và chỉ áp dụng cho các mạng cục bộ. I.3.4. Phân loại theo hệ điều hàng mạng Nếu phân loại theo hệ điều hành mạng người ta chia ra theo mô hình mạng ngang hàng, mạng khách/chủ hoặc phân loại theo tên hệ điều hành mà mạng sử dụng: Windows NT, Unix, Novell . . . 15 Trung tâm Điện toán Truyền số liệu KV1
  17. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.4. Giới thiệu các mạng máy tính thông dụng nhất I.4.1. Mạng cục bộ Một mạng cục bộ là sự kết nối một nhóm máy tính và các thiết bị kết nối mạng được lắp đặt trên một phạm vị địa lý giới hạn, thường trong một toà nhà hoặc một khu công sở nào đó. Mạng cục bộ có các đặc tính sau: - Tốc độ truyền dữ liệu cao - Phạm vi địa lý giới hạn -Sở hữu của một cơ quan/tổ chức I.4.2. Mạng diện rộng với kết nối LAN TO LAN Mạng diện rộng bao giờ cũng là sự kết nối của các mạng LAN, mạng diện rộng có thể trải trên phạm vi một vùng, quốc gia hoặc cả một lục địa thậm chí trên phạm vi toàn cầu. - Tốc độ truyền dữ liệu không cao - Phạm vi địa lý không giới hạn - Thường triển khai dựa vào các công ty truyền thông, bưu điện và dùng các hệ thống truyền thông này để tạo dựng đường truyền - Một mạng WAN có thể là sở hữu của một tập đoàn/tổ chức hoặc là mạng kết nối của nhiều tập đoàn/tỗ chức LAN LAN WAN Links LAN 16 Trung tâm Điện toán Truyền số liệu KV1
  18. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.4.3. Liên mạng INTERNET Với sự phát triển nhanh chóng của công nghệ là sự ra đời của liên mạng INTERNET, - Là một mạng toàn cầu - Là sự kết hợp của vô số các hệ thống truyền thông, máy chủ cung cấp thông tin và dịch vụ, các máy trạm khai thác thông tin - Dựa trên nhiều nền tảng truyền thông khác nhau, nhưng đều trên nền giao thức TCP/IP - Là sở hữu chung của toàn nhân loại - Càng ngày càng phát triển mãnh liệt I.4.4. Mạng INTRANET Thực sự là một mạng INTERNET thu nhỏ vào trong một cơ quan/công ty/tổ chức hay một bộ/nghành . . ., giới hạn phạm vi người sử dụng, có sử dụng các công nghệ kiểm soát truy cập và bảo mật thông tin . Được phát triển từ các mạng LAN, WAN dùng công nghệ INTERNET II. Mạng cục bộ, kiến trúc mạng cục bộ II.1. Mạng cục bộ Tên gọi “mạng cục bộ” được xem xét từ quy mô của mạng. Tuy nhiên, đó không phải là đặc tính duy nhất của mạng cục bộ nhưng trên thực tế, quy mô của mạng quyết định nhiều đặc tính và công nghệ của mạng. Sau đây là một số đặc điểm của mạng cục bộ: Đặc điểm của mạng cục bộ - Mạng cục bộ có quy mô nhỏ, thường là bán kính dưới vài km. Đặc điểm này cho phép không cần dùng các thiết bị dẫn đường với các mối liên hệ phức tạp - Mạng cục bộ thường là sở hữu của một tổ chức. Điều này dường như có vẻ ít quan trọng nhưng trên thực tế đó là điều khá quan trọng để việc quản lý mạng có hiệu quả. 17 Trung tâm Điện toán Truyền số liệu KV1
  19. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng - Mạng cục bộ có tốc độ cao và ít lỗi. Trên mạng rộng tốc độ nói chung chỉ đạt vài Kbit/s. Còn tốc độ thông thường trên mạng cục bộ là 10, 100 Kb/s và tới nay với Gigabit Ethernet, tốc độ trên mạng cục bộ có thể đạt 1Gb/s. Xác suất lỗi rất thấp. II.2. Kiến trúc mạng cục bộ II.2.1. Đồ hình mạng (Network Topology) * Định nghĩa Topo mạng: Cách kết nối các máy tính với nhau về mặt hình học mà ta gọi là tô pô của mạng Có hai kiểu nối mạng chủ yếu đó là : - Nối kiểu điểm - điểm (point - to - point). - Nối kiểu điểm - nhiều điểm (point - to - multipoint hay broadcast). Theo kiểu điểm - điểm, các đường truyền nối từng cặp nút với nhau và mỗi nút đều có trách nhiệm lưu giữ tạm thời sau đó chuyển tiếp dữ liệu đi cho tới đích. Do cách làm việc như vậy nên mạng kiểu này còn được gọi là mạng "lưu và chuyển tiếp" (store and forward). Theo kiểu điểm - nhiều điểm, tất cả các nút phân chia nhau một đường truyền vật lý chung. Dữ liệu gửi đi từ một nút nào đó sẽ được tiếp nhận bởi tất cả các nút còn lại trên mạng, bởi vậy cần chỉ ra địa chỉ đích của dữ liệu để căn cứ vào đó các nút kiểm tra xem dữ liệu đó có phải gửi cho mình không. * Phân biệt kiểu tô pô của mạng cục bộ và kiểu tô pô của mạng rộng. Tô pô của mạng rộng thông thường là nói đến sự liên kết giữa các mạng cục bộ thông qua các bộ dẫn đường (router). Đối với mạng rộng topo của mạng là hình trạng hình học của các bộ dẫn đường và các kênh viễn thông còn khi nói tới tô pô của mạng cục bộ người ta nói đến sự liên kết của chính các máy tính. a) Mạng hình sao 18 Trung tâm Điện toán Truyền số liệu KV1
  20. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Mạng hình sao có tất cả các trạm được kết nối với một thiết bị trung tâm có nhiệm vụ nhận tín hiệu từ các trạm và chuyển đến trạm đích. Tuỳ theo yêu cầu truyền thông trên mạng mà thiết bị trung tâm có thể là bộ chuyển mạch (switch), bộ chọn đường (router) hoặc là bộ phân kênh (hub). Vai trò của thiết bị trung tâm này là thực hiện việc thiết lập các liên kết điểm-điểm (point-to- point) giữa các trạm. Ưu điểm: Thiết lập mạng đơn giản, dễ dàng cấu hình lại mạng ( thêm, bớt các trạm ), dễ dàng kiểm soát và khắc phục sự cố, tận dụng được tối đa tốc độ truyền của đường truyền vật lý. Nhược điểm: Độ dài đường truyền nối một trạm với thiết bị trung tâm bị hạn chế (trong vòng 100m, với công nghệ hiện nay). Hub Hình 1.1: Kết nối hình sao b) Mạng trục tuyến tính (Bus): Trong mạng trục tất cả các trạm phân chia một đường truyền chung (bus). Đường truyền chính được giới hạn hai đầu bằng hai đầu nối đặc biệt gọi là terminator. Mỗi trạm được nối với trục chính qua một đầu nối chữ T (T- connector) hoặc một thiết bị thu phát (transceiver). Khi một trạm truyền dữ liệu tín hiệu được quảng bá trên cả hai chiều của bus, tức là mọi trạm còn lại đều có thể thu được tín hiệu đó trực tiếp. Đối với các bus một chiều thì tín hiệu chỉ đi về một phía, lúc đó các terminator phải được thiết kế sao cho các tín hiệu đó phải được dội lại trên bus để cho các trạm trên mạng đều có thể thu nhận được tín hiệu đó. Như vậy với topo mạng trục dữ liệu được truyền theo các liên kết điểm-đa điểm (point-to-multipoint) hay quảng bá (broadcast). 19 Trung tâm Điện toán Truyền số liệu KV1
  21. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Hình 1.2. Kết nối kiểu bus Ưu điểm : Dễ thiết kế, chi phí thấp Nhược điểm: Tính ổn định kém, chỉ một nút mạng hỏng là toàn bộ mạng bị ngừng hoạt động c) Mạng hình vòng Trên mạng hình vòng tín hiệu được truyền đi trên vòng theo một chiều duy nhất. Mỗi trạm của mạng được nối với vòng qua một bộ chuyển tiếp (repeater) có nhiệm vụ nhận tín hiệu rồi chuyển tiếp đến trạm kế tiếp trên vòng. Như vậy tín hiệu được lưu chuyển trên vòng theo một chuỗi liên tiếp các liên kết điểm-điểm giữa các repeater do đó cần có giao thức điều khiển việc cấp phát quyền được truyền dữ liệu trên vòng mạng cho trạm có nhu cầu. Để tăng độ tin cậy của mạng ta có thể lắp đặt thêm các vòng dự phòng, nếu vòng chính có sự cố thì vòng phụ sẽ được sử dụng. Mạng hình vòng có ưu nhược điểm tương tự mạng hình sao, tuy nhiên mạng hình vòng đòi hỏi giao thức truy nhập mạng phức tạp hơn mạng hình sao. Hình 1.3. Kết nối kiểu vòng 20 Trung tâm Điện toán Truyền số liệu KV1
  22. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng d) Kết nối hỗn hợp Là sự phối hợp các kiểu kết nối khác nhau, ví du hình cây là cấu trúc phân tầng của kiểu hình sao hay các HUB có thể được nối với nhau theo kiểu bus còn từ các HUB nối với các máy theo hình sao. HUB Hub Hub Bộ chuyển đổi cáp II.3. Các phương pháp truy cập đường truyền vật lý Trong mạng cục bộ, tất cả các trạm kết nối trực tiếp vào đường truyền Hình 1.4. Một kết nối hỗn hợp chung. Vì vậy tín hiệu từ một trạm đưa lên đường truyền sẽ được các trạm khác “nghe thấy”. Một vấn đề khác là, nếu nhiều trạm cùng gửi tín hiệu lên đường truyền đồng thời thì tín hiệu sẽ chồng lên nhau và bị hỏng. Vì vậy cần phải có một phương pháp tổ chức chia sẻ đường truyền để việc truyền thông đựơc đúng đắn. Có hai phương pháp chia sẻ đường truyền chung thường được dùng trong các mạng cục bộ: - Truy nhập đường truyền một cách ngẫu nhiên, theo yêu cầu. Đương nhiên phải có tính đến việc sử dụng luân phiên và nếu trong trường hợp do có nhiều trạm cùng truyền tin dẫn đến tín hiệu bị trùm lên nhau thì phải truyền lại. - Có cơ chế trọng tài để cấp quyền truy nhập đường truyền sao cho không xảy ra xung đột 21 Trung tâm Điện toán Truyền số liệu KV1
  23. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng II.3.1 Phương pháp đa truy nhập sử dụng sóng mang có phát hiện xung đột CSMA/CD (Carrier Sense Multiple Access with Collision Detection) Giao thức CSMA (Carrier Sense Multiple Access) - đa truy nhập có cảm nhận sóng mang được sử dụng rất phổ biến trong các mạng cục bộ. Giao thức này sử dụng phương pháp thời gian chia ngăn theo đó thời gian được chia thành các khoảng thời gian đều đặn và các trạm chỉ phát lên đường truyền tại thời điểm đầu ngăn. Mỗi trạm có thiết bị nghe tín hiệu trên đường truyền (tức là cảm nhận sóng mang). Trước khi truyền cần phải biết đường truyền có rỗi không. Nếu rỗi thì mới được truyền. Phương pháp này gọi là LBT (Listening before talking). Khi phát hiện xung đột, các trạm sẽ phải phát lại. Có một số chiến lược phát lại như sau: - Giao thức CSMA 1-kiên trì. Khi trạm phát hiện kênh rỗi trạm truyền ngay. Nhưng nếu có xung đột, trạm đợi khoảng thời gian ngẫu nhiên rồi truyền lại. Do vậy xác suất truyền khi kênh rỗi là 1. Chính vì thế mà giao thức có tên là CSMA 1-kiên trì. (1) - Giao thức CSMA không kiên trì khác một chút.Trạm nghe đường, nếu kênh rỗi thì truyền, nếu không thì ngừng nghe một khoảng thời gian ngẫu nhiên rồi mới thực hiện lại thủ tục. Cách này có hiệu suất dùng kênh cao hơn. (2) - Giao thức CSMA p-kiên trì. Khi đã sẵn sàng truyền, trạm cảm nhận đường, nếu đường rỗi thì thực hiện việc truyền với xác suất là p < 1 (tức là ngay cả khi đường rỗi cũng không hẳn đã truyền mà đợi khoảng thời gian tiếp theo lại tiếp tục thực hiện việc truyền với xác suất còn lại q=1-p. (3) • Ta thấy giải thuật (1) có hiệu quả trong việc tránh xung đột vì hai trạm cần truyền thấy đường truyền bận sẽ cùng rút lui chờ trong những khoảng thời gian ngẫu nhiên khác nhau sẽ quay lại tiếp tục nghe đường truyền. Nhược điểm của nó là có thể có thời gian không sử dụng đường truyền sau mỗi cuộc gọi. • Giải thuật (2) cố gắng làm giảm thời gian "chết" bằng cách cho phép một trạm có thể được truyền dữ liệu ngay sau khi một cuộc truyền kết thúc. Tuy nhiên nếu lúc đó lại có nhiều trạm đang đợi để truyền dữ liệu thì khả năng xẩy ra xung đột sẽ rất lớn. 22 Trung tâm Điện toán Truyền số liệu KV1
  24. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng • Giải thuật (3) với giá trị p được họn hợp lý có thể tối thiểu hoá được cả khả năng xung đột lẫn thời gian "chết" của đường truyền. • Xẩy ra xung đột thường là do độ trễ truyền dẫn, mấu chốt của vấn đề là : các trạm chỉ "nghe" trước khi truyền dữ liệu mà không "nghe" trong khi truyền, cho nên thực tế có xung đột thế nhưng các trạm không biết do đó vẫn truyền dữ liệu. • Để có thể phát hiện xung đột, CSMA/CD đã bổ xung thêm các quy tắc sau đây : - Khi một trạm truyền dữ liệu, nó vẫn tiếp tục "nghe" đường truyền . Nếu phát hiện xung đột thì nó ngừng ngay việc truyền, nhờ đó mà tiết kiệm được thời gian và giải thông, nhưng nó vẫn tiếp tục gửi tín hiệu thêm một thời gian nữa để đảm bảo rằng tất cả các trạm trên mạng đều "nghe" được sự kiện này.(như vậy phải tiếp tục nghe đường truyền trong khi truyền để phát hiện đụng độ (Listening While Talking)) - Sau đó trạm sẽ chờ trong một khoảng thời gian ngẫu nhiên nào đó rồi thử truyền lại theo quy tắc CSMA. Giao thức này gọi là CSMA có phát hiện xung đột (Carrier Sense Multiple Access with Collision Detection viết tắt là CSMA/CD), dùng rộng rãi trong LAN và MAN. II.3.2. Phương pháp Token Bus Nguyên lý chung của phương pháp này là để cấp phát quyền truy nhập đường truyền cho các trạm đang có nhu cầu truyền dữ liệu, một thẻ bài được lưu chuyển trên một vòng logic được thiết lập bởi các trạm đó. Khi một trạm nhận được thẻ bài thì sẽ được phép sử dụng đường truyền trong một thời gian nhất định. Trong khoảng thời gian đó nó có thể truyền một hay nhiều đơn vị dữ liệu. Khi đã truyền xong dữ liệu hoặc thời gian đã hết thì trạm đó phải chuyển thẻ bài cho trạm tiếp theo. Như vậy, công việc đầu tiên là thiết lập vòng logic (hay còn gọi là vòng ảo) bao gồm các trạm đang có nhu cầu truyền dữ liệu được xác định vị trí theo một chuỗi thứ tự mà trạm cuối cùng của chuỗi sẽ tiếp liền sau bởi trạm đầu tiên. Mỗi trạm sẽ biết địa chỉ của trạm liền trước và kề 23 Trung tâm Điện toán Truyền số liệu KV1
  25. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng sau nó. Thứ tự của các trạm trên vòng logic có thể độc lập với thứ tự vật lý. Các trạm không hoặc chưa có nhu cầu truyền dữ liệu không được vào trong vòng logic. A B C D H G F E Hình 1.5. Ví dụ về vòng logic Trong ví dụ trên, các trạm A, E nằm ngoài vòng logic do đó chỉ có thể tiếp nhận được dữ liệu dành cho chúng. Việc thiết lập vòng logic không khó nhưng việc duy trì nó theo trạng thái thực tế của mạng mới là khó. Cụ thể phải thực hiện các chức năng sau: a) Bổ xung một trạm vào vòng logic : các trạm nằm ngoài vòng logic cần được xem xét một cách định kỳ để nếu có nhu cầu truyền dữ liệu thì được bổ xung vào vòng logic. b) Loại bỏ một vòng khỏi vòng logic : khi một trạm không có nhu cầu truyền dữ liệu thì cần loại bỏ nó ra khỏi vòng logic để tối ưu hoá việc truyền dữ liệu bằng thẻ bài. 24 Trung tâm Điện toán Truyền số liệu KV1
  26. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng c) Quản lý lỗi : một số lỗi có thể xẩy ra như trùng hợp địa chỉ, hoặc đứt vòng logic. d) Khởi taọ vòng logic : khi khởi tạo mạng hoặc khi đứt vòng logic cần phải khởi tạo lại vòng logic. II.3.2. Phương pháp Token Ring Phương pháp này cũng dựa trên nguyên tắc dùng thẻ bài để cấp phát quyền truy nhập đường truyền. Nhưng ở đây thẻ bài lưu chuyển theo theo vòng vật lý chứ không theo vòng logic như dối với phương pháp token bus. Thẻ bài là một đơn vị truyền dữ liệu đặc biệt trong đó có một bit biểu diễn trạng thái của thẻ (bận hay rỗi). Một trạm muốn truyền dữ liệu phải chờ cho tới khi nhận được thẻ bài "rỗi". Khi đó trạm sẽ đổi bit trạng thái thành "bận" và truyền một đơn vị dữ liệu đi cùng với thẻ bài đi theo chiều của vòng. Lúc này không còn thẻ bài "rỗi " nữa do đó các trạm muốn truyền dữ liệu phải đợi. Dữ liệu tới trạm đích được sao chép lại, sau đó cùng với thẻ bài trở về trạm nguồn. Trạm nguồn sẽ xoá bỏ dữ liệu đổi bit trạng thái thành "rỗi" và cho lưu chuyển thẻ trên vòng để các trạm khác có nhu cầu truyền dữ liệu được phép truyền . D A C B Hình 1.6. Thẻ bài trong mạng Ring 25 Trung tâm Điện toán Truyền số liệu KV1
  27. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Sự quay trở lại trạm nguồn của dữ liệu và thẻ bài nhằm tạo khả năng báo nhận tự nhiên : trạm đích có thể gửi vào đơn vị dữ liệu (phần header) các thông tin về kết quả tiếp nhận dữ liệu của mình. Chẳng hạn các thông tin đó có thể là: trạm đích không tồn tại hoặc không hoạt động, trạm đích tồn tại nhưng dữ liệu không được sao chép, dữ liệu đã được tiếp nhận, có lỗi Trong phương pháp này cần giải quyết hai vấn đề có thể dẫn đến phá vỡ hệ thống đó là mất thẻ bài và thẻ bài "bận" lưu chuyển không dừng trên vòng .Có nhiều phương pháp giải quyết các vấn đề trên, dưới đây là một phương pháp được khuyến nghị: Đối với vấn đề mất thẻ bài có thể quy định trước một trạm điều khiển chủ động. Trạm này sẽ theo dõi, phát hiện tình trạng mất thẻ bài bằng cách dùng cơ chế ngưỡng thời gian (time - out) và phục hồi bằng cách phát đi một thẻ bài "rỗi" mới. Đối với vấn đề thẻ bài bận lưu chuyển không dừng, trạm điều khiển sử dụng một bit trên thẻ bài để đánh dấu khi gặp một thẻ bài "bận" đi qua nó. Nếu nó gặp lại thẻ bài bận với bit đã đánh dấu đó có nghĩa là trạm nguồn đã không nhận lại được đơn vị dữ liệu của mình do đó thẻ bài "bận" cứ quay vòng mãi. Lúc đó trạm điều khiển sẽ chủ động đổi bit trạng thái "bận" thành "rỗi" và cho thẻ bài chuyển tiếp trên vòng. Trong phương pháp này các trạm còn lại trên mạng sẽ đóng vai trò bị động, chúng theo dõi phát hiện tình trạng sự cố trên trạm chủ động và thay thế trạm chủ động nếu cần. III. Chuẩn hoá mạng máy tính III.1. Vấn đề chuẩn hoá mạng và các tổ chức chuẩn hoá mạng Khi thiết kế, các nhà thiết kế tự do lựa chọn kiến trúc mạng cho riêng mình. Từ đó dẫn tới tình trạng không tương thích giữa các mạng máy tính với nhau. Nhu cầu trao đổi thông tin càng lớn thúc đẩy việc xây dựng khung chuẩnvề kiến trúc mạng để làm căn cứ cho các nhà thiết kế và chế tạo thiết bị mạng . Chính vì lý do đó, tổ chức tiêu chuẩn hoá quốc tế ISO (Internatinal Organnization for Standarzation) đã xây dựng mô hình tham chiếu cho việc kết 26 Trung tâm Điện toán Truyền số liệu KV1
  28. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng nối các hệ thống mở OSI (reference model for Open Systems Interconnection). Mô hình này là cơ sở cho việc kết nối các hệ thống mở phục vụ cho các ứng dụng phân tán. Có hai loại chuẩn cho mạng đó là : - Các chuẩn chính thức ( de jure ) do các tổ chức chuẩn quốc gia và quốc tế ban hành. - Các chuẩn tực tiễn ( de facto ) do các hãng sản xuất, các tổ chức người sử dụng xây dựng và được dùng rộng rãi trong thực tế III.2. Mô hình tham chiếu OSI 7 lớp Khi thiết kế, các nhà thiết kế tự do lựa chọn kiến trúc mạng cho riêng mình. Từ đó dẫn tới tình trạng không tương thích giữa các mạng máy tính với nhau. Vấn đề không tương thích đó làm trở ngại cho sự tương tác giữa những người sử dụng mạng khác nhau. Nhu cầu trao đổi thông tin càng lớn thúc đẩy việc xây dựng khung chuẩn về kiến trúc mạng để làm căn cứ cho các nhà thiết kế và chế tạo thiết bị mạng . Chính vì lý do đó, tổ chức tiêu chuẩn hoá quốc tế ISO (Internatinal Organnization for Standarzation) đã xây dựng mô hình tham chiếu cho việc kết nối các hệ thống mở OSI (reference model for Open Systems Interconnection). Mô hình này là cơ sở cho việc kết nối các hệ thống mở phục vụ cho các ứng dụng phân tán. 27 Trung tâm Điện toán Truyền số liệu KV1
  29. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Mô hình OSI được biểu diễn theo hình dưới đây: Lớp ứng dụng (application) Lớp thể hiện (presentation) Lớp phiên (session) Lớp chuyển vận (transport) Lớp mạng (network) Lớp liên kết dữ liệu (data link) Lớp vật lý (physical link) Hình 1.7. Mô hình OSI 7 lớp a) Lớp vật lý Lớp này bảo đảm các công việc sau: - Lập, cắt cuộc nối. - Truyền tin dạng bit qua kênh vật lý. - Có thể có nhiều kênh. b) Lớp liên kết dữ liệu Lớp này đảm bảo việc biến đổi các tin dạng bit nhận được từ lớp dưới (vật lý) sang khung số liệu, thông báo cho hệ phát, kết quả thu được sao cho các thông tin truyền lên cho mức 3 không có lỗi. Các thông tin truyền ở mức 1 có thể làm hỏng các thông tin khung số liệu (frame error). Phần mềm mức hai 28 Trung tâm Điện toán Truyền số liệu KV1
  30. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng sẽ thông báo cho mức một truyền lại các thông tin bị mất / lỗi. Đồng bộ các hệ có tốc độ xử lý tính khác nhau, một trong những phương pháp hay sử dụng là dùng bộ đệm trung gian để lưu giữ số liệu nhận được. Độ lớn của bộ đệm này phụ thuộc vào tương quan xử lý của các hệ thu và phát. Trong trường hợp đường truyền song công toàn phần, lớp datalink phải đảm bảo việc quản lý các thông tin số liệu và các thông tin trạng thái. c) Lớp mạng Nhiệm vụ của lớp mạng là đảm bảo chuyển chính xác số liệu giữa các thiết bị cuối trong mạng. Để làm được việc đó, phải có chiến lược đánh địa chỉ thống nhất trong toàn mạng. Mỗi thiết bị cuối và thiết bị mạng có một địa chỉ mạng xác định. Số liệu cần trao đổi giữa các thiết bị cuối được tổ chức thành các gói (packet) có độ dài thay đổi và được gán đầy đủ địa chỉ nguồn (source address) và địa chỉ đích (destination address). Lớp mạng đảm bảo việc tìm đường tối ưu cho các gói dữ liệu bằng các giao thức chọn đường dựa trên các thiết bị chọn đường (router). Ngoài ra, lớp mạng có chức năng điều khiển lưu lượng số liệu trong mạng để tránh xảy ra tắc ngẽn bằng cách chọn các chiến lược tìm đường khác nhau để quyết định việc chuyển tiếp các gói số liệu. d) Lớp chuyển vận Lớp này thực hiện các chức năng nhận thông tin từ lớp phiên (session) chia thành các gói nhỏ hơn và truyền xuống lớp dưới, hoặc nhận thông tin từ lớp dưới chuyển lên phục hồi theo cách chia của hệ phát (Fragmentation and Reassembly). Nhiệm vụ quan trọng nhất của lớp vận chuyển là đảm bảo chuyển số liệu chính xác giữa hai thực thể thuộc lớp phiên (end-to-end control). Để làm được việc đó, ngoài chức năng kiểm tra số tuần tự phát, thu, kiểm tra và phát hiện, xử lý lỗi.Lớp vận chuyển còn có chức năng điều khiển lưu lượng số liệu để đồng bộ giữa thể thu và phát , tránh tắc nghẽn số liệu khi chuyển qua lớp mạng. Ngoài ra, nhiều thực thể lớp phiên có thể trao đổi số liệu trên cùng một kết nối lớp mạng (multiplexing). e) Lớp phiên Liên kết giữa hai thực thể có nhu cầu trao đổi số liệu, ví dụ người dùng và một máy tính ở xa, được gọi là một phiên làm việc. Nhiệm vụ của lớp phiên là quản lý việc trao đổi số liệu, ví dụ: thiết lập giao diện giữa người dùng và 29 Trung tâm Điện toán Truyền số liệu KV1
  31. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng máy, xác định thông số điều khiển trao đổi số liệu (tốc độ truyền, số bit trong một byte, có kiểm tra lỗi parity hay không, v.v.), xác định loại giao thức mô phỏng thiết bị cuối (terminal emulation), v.v. Chức năng quan trọng nhất của lớp phiên là đảm bảo đồng bộ số liệu bằng cách thực hiện các điểm kiểm tra. Tại các điểm kiểm tra này, toàn bộ trạng thái và số liệu của phiên làm việc được lưu trữ trong bộ nhớ đệm. Khi có sự cố, có thể khởi tạo lại phiên làm việc từ điểm kiểm tra cuối cùng (không phải khởi tạo lại từ đầu). f) Lớp thể hiện Nhiệm vụ của lớp thể hiện là thích ứng các cấu trúc dữ liệu khác nhau của người dùng với cấu trúc dữ liệu thống nhất sử dụng trong mạng. Số liệu của người dùng có thể được nén và mã hoá ở lớp thể hiện, trước khi chuyển xuống lớp phiên. Ngoài ra, lớp thể hiện còn chứa các thư viện các yêu cầu của người dùng, thư viện tiện ích, ví dụ thay đổi dạng thể hiện của các tệp, nén tệp g) Lớp ứng dụng Lớp ứng dụng cung cấp các phương tiện để người sử dụng có thể truy nhập được vào môi trường OSI, đồng thời cung cấp các dịch vụ thông tin phân tán. Lớp mạng cho phép người dùng khai thác các tài nguyên trong mạng tương tự như tài nguyên tại chỗ. III.3. Các chuẩn kết nối thông dụng nhất IEEE 802.X và ISO 8802.X Bên cạnh việc chuẩn hoá cho mạng nối chung dẫn đến kết quả cơ bản nhất là mô hình tham chiếu OSI như đã giới thiệu. Việc chuẩn hoá mạng cục bộ nói riêng đã được thực hiện từ nhiều năm nay để đáp ứng sự phát triển của mạng cục bộ. Cũng như đối với mạng nói chung, có hai loại chuẩn cho mạng cục bộ, đó là : - Các chuẩn chính thức ( de jure ) do các tổ chức chuẩn quốc gia và quốc tế ban hành. - Các chuẩn tực tiễn ( de facto ) do các hãng soản xuất, các tổ chức người sử dụng xây dựng và được dùng rộng rãi trong thực tế - Các chuẩn IEEE 802.x và ISO 8802.x 30 Trung tâm Điện toán Truyền số liệu KV1
  32. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng IEEE là tổ chức đi tiên phong trong lĩnh vực chuẩn hoá mạng cục bộ với đề án IEEE 802 với kết quả là một loạt các chuẩn thuộc họ IEEE 802.x ra đời . Cuối những năm 80, tổ chức ISO đã tiếp nhận họ chuẩn này và ban hành thành chuẩn quốc tế dưới mã hiệu tương ứng là ISO 8802.x. IEEE 802.: là chuẩn đặc tả kiến trúc mạng, kết nối giữa các mạng và việc quản trị mạng đối với mạng cục bộ. IEEE 802.2: là chuẩn đặc tả tầng dịch vụ giao thức của mạng cục bộ. IEEE 802.3: là chuẩn đặc tả một mạng cục bộ dựa trên mạng Ethernet nổi tiếng của Digital, Intel và Xerox hợp tác xây dựng từ năm 1980. Tầng vật lý của IEEE 802.3 có thể dùng các phương án sau để xây dựng: - 10BASE5 : tốc độ 10Mb/s, dùng cáp xoắn đôi không bọc kim UTP (Unshield Twisted Pair), với phạm vi tín hiệu lên tới 500m, topo mạng hình sao. - 10BASE2 : tốc độ 10Mb/s, dùng cáp đồng trục thin-cable với trở kháng 50 Ohm, phạm vi tín hiệu 200m,topo mạng dạng bus. - 10BASE5 : tốc độ 10Mb/s, dùng cáp đồng trục thick-cable (đường kính 10mm) với trở kháng 50 Ohm, phạm vi tín hiệu 500m, topo mạng dạng bus. - 10BASE-F: dùng cáp quang, tốc độ 10Mb/s phạm vi cáp 2000m. IEEE 802.4: là chuẩn đặc tả mạng cục bộ với topo mạng dạng bus dùng thẻ bài để điều việc truy nhập đường truyền. IEEE 802.5: là chuẩn đặc tả mạng cục bộ với topo mạng dạng vòng (ring) dùng thẻ bài để điều việc truy nhập đường truyền. IEEE 802.6: là chuẩn đặc tả mạng tốc độ cao kết nối với nhiều mạng cục bộ thuộc các khu vực khác nhau của một đô thị (còn được gọi là mạng MAN - Metropolitan Area Network) 31 Trung tâm Điện toán Truyền số liệu KV1
  33. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng IEEE 802.9: là chuẩn đặc tả mạng tích hợp dữ liệu và tiếng nói bao gồm 1 kênh dị bộ 10 Mb/s cùng với 96 kênh 64Kb/s. Chuẩn này được thiết kế cho môi trường có lượng lưu thông lớn và cấp bách. IEEE 802.10: là chuẩn đặc tả về an toàn thông tin trong các mạng cục bộ có khả năng liên tác . IEEE 802.11: là chuẩn đặc tả mạng cục bộ không dây (Wireless LAN) hiện đang được tiếp tục phát triển. IEEE 802.12: là chuẩn đặc tả mạng cục bộ dựa trên công nghệ được đề xuất bởi AT&T, IBM và HP gọi là 100 VG - AnyLAN. Mạng này có topo mạng hình sao và một phương pháp truy nhập đường truyền có điều khiển tranh chấp. Khi có nhu cầu truyền dữ liệu, một trạm sẽ gửi yêu cầu đến hub và trạm chỉ có truyền dữ liệu khi hub cho phép. Mục 2: Các thiết bị mạng thông dụng và các chuẩn kết nối vật lý I. Các thiết bị mạng thông dụng II.1. Các loại cáp truyền II.1.1. Cáp đôi dây xoắn (Twisted pair cable) Cáp đôi dây xoắn là cáp gồm hai dây đồng xoắn để tránh gây nhiễu cho các đôi dây khác, có thể kéo dài tới vài km mà không cần khuyếch đại. Giải tần trên cáp dây xoắn đạt khoảng 300–4000Hz, tốc độ truyền đạt vài kbps đến vài Mbps. Cáp xoắn có hai loại: 32 Trung tâm Điện toán Truyền số liệu KV1
  34. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng - Loại có bọc kim loại để tăng cường chống nhiễu gọi là cap STP ( Shield Twisted Pair). Loại này trong vỏ bọc kim có thể có nhiều đôi dây. Về lý thuyết thì tốc độ truyền có thể đạt 500 Mb/s nhưng thực tế thấp hơn rất nhiều (chỉ đạt 155 Mbps với cáp dài 100 m) - Loại không bọc kim gọi là UTP (UnShield Twisted Pair), chất lượng kém hơn STP nhưng rất rẻ. Cap UTP được chia làm 5 hạng tuỳ theo tốc độ truyền. Cáp loại 3 dùng cho điện thoại. Cáp loại 5 có thể truyền với tốc độ 100Mb/s rất hay dùng trong các mạng cục bộ vì vừa rẻ vừa tiện sử dụng. Cáp này có 4 đôi dây xoắn nằm trong cùng một vỏ bọc Hình 7. Cáp UTP Cat. 5 II.1.2. Cáp đồng trục (Coaxial cable) băng tần cơ sở Là cáp mà hai dây của nó có lõi lồng nhau, lõi ngoài là lưới kim loại. , Khả năng chống nhiễu rất tốt nên có thể sử dụng với chiều dài từ vài trăm met đến vài km. Có hai loại được dùng nhiều là loại có trở kháng 50 ohm và loại có trở kháng 75 ohm Hình 8. Cáp đồng trục 33 Trung tâm Điện toán Truyền số liệu KV1
  35. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Dải thông của cáp này còn phụ thuộc vào chiều dài của cáp. Với khoảng cách1 km có thể đạt tốc độ truyền tư 1– 2 Gbps. Cáp đồng trục băng tần cơ sở thường dùng cho các mạng cục bộ. Có thể nối cáp bằng các đầu nối theo chuẩn BNC có hình chữ T. ở VN người ta hay gọi cáp này là cáp gầy do dịch từ tên trong tiếng Anh là ‘Thin Ethernet”. Một loại cáp khác có tên là “Thick Ethernet” mà ta gọi là cáp béo. Loại này thường có màu vàng. Người ta không nối cáp bằng các đầu nối chữ T như Hình 9. Kết nối bằng Traceiver cáp gầy mà nối qua các kẹp bấm vào dây. Cứ 2m5 lại có đánh dấu để nối dây (nếu cần). Từ kẹp đó người ta gắn các tranceiver rồi nối vào máy tính. (Xem hình 9 ) II.1.3. Cáp đồng trục băng rộng (Broadband Coaxial Cable) Đây là loại cáp theo tiêu chuẩn truyền hình (thường dùng trong truyền hình cap) có giải thông từ 4 – 300 Khz trên chiều dài 100 km. Thuật ngữ “băng rộng” vốn là thuật ngữ của ngành truyền hình còn trong ngành truyền số liệu điều này chỉ có nghĩa là cáp loại này cho phép truyền thông tin tuơng tự (analog) mà thôi. Các hệ thống dựa trên cáp đồng trục băng rộng có thể truyền song song nhiều kênh. Việc khuyếch đại tín hiệu chống suy hao có thể làm theo kiểu khuyếch đại tín hiệu tương tự (analog). Để truyền thông cho máy tính cần chuyển tín hiệu số thành tín hiệu tương tự. 34 Trung tâm Điện toán Truyền số liệu KV1
  36. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng II.1.4. Cáp quang Dùng để truyền các xung ánh sáng trong lòng một sợi thuỷ tinh phản xạ toàn phần. Môi trường cáp quang rất lý tưởng vì - Xung ánh sáng có thể đi hàng trăm km mà không giảm cuờng độ sáng. - Giải thông rất cao vì tần số ánh sáng dùng đối với cáp quang cỡ khoảng 1014 –1016 - An toàn và bí mật - Không bị nhiễu điện từ Chỉ có hai nhược điểm là khó nối dây và giá thành cao. Hình 10. Truyền tín hiệu bằng cáp quang Để phát xung ánh sáng người ta dùng các đèn LED hoặc các diod laser. Để nhận người ta dùng các photo diode , chúng sẽ tạo ra xung điện khi bắt được xung ánh sáng Cáp quang cũng có hai loại - Loại đa mode (multimode fiber): khi góc tới thành dây dẫn lớn đến một mức nào đó thì có hiện tượng phản xạ toàn phần. Nhiều tia sáng có thể cùng truyền miễn là góc tới của chúng đủ lớn. Các cap đa mode có đường kính khoảng 50 µ - Loại đơn mode (singlemode fiber): khi đường kính dây dẫn bằng bước sóng thì cáp quang giống như một ống dẫn sóng, không có hiện tượng phản xạ nhưng chỉ cho một tia đi. Loại nàycó cường kính khoản 8 µ và phải dùng diode laser. Cáp quang đa mode có thể cho phép truyền xa tới hàng trăm km mà không cần phải khuyếch đại. 35 Trung tâm Điện toán Truyền số liệu KV1
  37. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng II.2. Các thiết bị ghép nối II.2.1. Card giao tiếp mạng (Network Interface Card viết tắt là NIC) Đó là một card được cắm trực tiếp vào máy tính. Trên đó có các mạch điện giúp cho việc tiếp nhận (receiver) hoặc/và phát (transmitter) tín hiệu lên mạng. Người ta thường dùng từ tranceiver để chỉ thiết bị (mạch) có cả hai chức năng thu và phát. Transceiver có nhiều loại vì phải thích hợp đối với cả môi trường truyền và do đó cả đầu nối. Ví dụ với cáp gầy card mạng cần có đường giao tiếp theo kiểu BNC, với cáp UTP cần có đầu nối theo kiểu giắc điện thoại K5, cáp dày dùng đường nối kiểu AUI , với cáp quang phải có những transceiver cho phép chuyển tín hiệu điện thành các xung ánh sáng và ngược lại. Để dễ ghép nối, nhiều card có thể có nhiều đầu nối ví dụ BNC cho cáp gầy, K45 cho UTP hay AUI cho cáp béo Trong máy tính thường để sẵn các khe cắm để bổ sung các thiết bị ngoại vi hay cắm các thiết bị ghép nối. II.2.2. Bộ chuyển tiếp (REPEATER ) Tín hiệu truyền trên các khoảng cách lớn có thể bị suy giảm. Nhiệm vụ của các repeater là hồi phục tín hiệu để có thể truyền tiếp cho các trạm khác. Một số repeater đơn giản chỉ là khuyếch đại tín hiệu. Trong trường hợp đó cả tín hiệu bị méo cũng sẽ bị khuyếch đại. Một số repeater có thể chỉnh cả tín hiệu. II.2.3. Các bộ tập trung (Concentrator hay HUB) HUB là một loại thiết bị có nhiều đầu để cắm các đầu cáp mạng. HUB có thể có nhiều loại ổ cắm khác nhau phù hợp với kiểu giắc mạng RJ45, AUI hay BCN. Như vậy người ta sử dụng HUB để nối dây theo kiểu hình sao. Ưu điểm của kiểu nối này là tăng độ độc lập của các máy . Nếu dây nối tới một máy nào đó tiếp xúc không tốt cũng không ảnh hưởng đến máy khác. 36 Trung tâm Điện toán Truyền số liệu KV1
  38. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Đặc tính chủ yếu của HUB là hệ thống chuyển mạch trung tâm trong mạng có kiến trúc hình sao với việc chuyển mạch được thực hiện theo hai cách: store-and-forward hoặc on-the-fly. Tuy nhiên hệ thống chuyển mạch trung tâm làm nảy sinh vấn đề khi lỗi xảy ra ở chính trung tâm, vì vậy hướng phát triển trong suốt nhiều năm qua là khử lỗi để làm tăng độ tin cậy của HUB. Có loại HUB thụ động (passive HUB) là HUB chỉ đảm bảo chức năng kết nối hoàn toàn không xử lý lại tín hiệu. Khi đó không thể dùng HUB để tăng khoảng cách giữa hai máy trên mạng. HUB chủ động (active HUB) là HUB có chức năng khuyếch đại tín hiệu để chống suy hao. Với HUB này có thể tăng khoảng cách truyền giữa các máy. HUB thông minh (intelligent HUB) là HUB chủ động nhưng có khả năng tạo ra các gói tin mang tin tức về hoạt động của mình và gửi lên mạng để người quản trị mạng có thể thực hiện quản trị tự động II.2.4. Switching Hub (hay còn gọi tắt là switch) Là các bộ chuyển mạch thực sự. Khác với HUB thông thường, thay vì chuyển một tín hiệu đến từ một cổng cho tất cả các cổng, nó chỉ chuyển tín hiệu đến cổng có trạm đích. Do vậy Switch là một thiết bị quan trọng trong các mạng cục bộ lớn dùng để phân đoạn mạng. Nhờ có switch mà đụng độ trên mạng giảm hẳn. Ngày nay switch là các thiết bị mạng quan trọng cho phép tuỳ biến trên mạng chẳng hạn lập mạng ảo. 37 Trung tâm Điện toán Truyền số liệu KV1
  39. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Hình 11. LAN Switch nối hai Segment mạng Switch thực chất là một loại bridge, về tính năng kỹ thuật, nó là loại bridge có độ trễ nhỏ nhất. Khác với bridge là phải đợi đến hết frame rồi mới truyền, switch sẽ chờ cho đến khi nhận được địa chỉ đích của frame gửi tới và lập tức được truyền đi ngay. Điều này có nghĩa là frame sẽ được gửi tới LAN cần gửi trước khi nó được switch nhận xong hoàn toàn. II.2.5. Modem Là tên viết tắt từ hai từ điều chế (MOdulation) và giải điều chế (DEModulation) là thiết bị cho phép điều chế để biến đổi tín hiệu số sang tín hiệu tương tự để có thể gửi theo đường thoại và khi nhận tín hiệu từ đường thoại có thể biến đổi ngược lại thành tín hiệu số. Tuy nhiên có thể sử dụng nó theo kiểu kết nối từ xa theo đường điện thoại II.2.6. Multiplexor - Demultiplexor Bộ dồn kênh có chức năng tổ hợp nhiều tín hiệu để cùng gửi trên một đường truyền. Đương nhiên tại nơi nhận cần phải tách kênh. II.2.7. Router Router là một thiết bị không phải để ghép nối giữa các thiết bị trong một mạng cục bộ mà dùng để ghép nối các mạng cục bộ với nhau thành mạng rộng. Router thực sự là một máy tính làm nhiệm vụ chọn đường cho các gói tin hướng ra ngoài. 38 Trung tâm Điện toán Truyền số liệu KV1
  40. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Khác với repeaters và bridges, router là thiết bị kết nối mạng độc lập phần cứng, nó được dùng để kết nối các mạng có cùng chung giao thức. Chức năng cơ bản nhất của router là cung cấp một môi trường chuyển mạch gói (packet switching) đáng tin cậy để lưu trữ và truyền số liệu. Để thực hiện điều đó, nó thiết lập các thông tin về các đường truyền hiện có trong mạng, và khi cần nó sẽ cung cấp hai hay nhiều đường truyền giữa hai mạng con bất kỳ tạo ra khả năng mềm dẻo trong việc tìm đường đi hợp lý nhất về một phương diện nào đó. III.3. Một số kiểu nối mạng thông dụng và các chuẩn III.3.1.Các thành phần thông thường trên một mạng cục bộ gồm có - Các máy chủ cung cấp dịch vụ (server) - Các máy trạm cho người làm việc (workstation) - Đường truyền (cáp nối) - Card giao tiếp giữa máy tính và đường truyền (network interface card) - Các thiết bị nối (connection device) Hình 9. Cấu hình của một mạng cục bộ 39 Trung tâm Điện toán Truyền số liệu KV1
  41. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Hai yếu tố được quan tâm hàng đầu khi kết nối mạng cục bộ là tốc độ trong mạng và bán kính mạng. Tên các kiểu mạng dùng theo giao thức CSMA/CD cũng thể hiện điều này. Sau đây là một số kiểu kết nối đó với tốc độ 10 Mb/s khá thông dụng trong thời gian qua và một số thông số kỹ thuật: Chuẩn IEEE 802.3 Kiểu 10BASE5 10BASE2 10BASE-T Kiểu cáp Cáp đồng trục Cáp đồng trục Cáp UTP Tốc độ 10 Mb/s Độ dài cáp tối đa 500 m/segment 185 m/segment 100 m kể từ HUB Số các thực thể 100 host /segment 30 host / segment Số cổng của HUB truyền thông III.3.2. Kiểu 10BASE5: Là chuẩn CSMA/CD có tốc độ 10Mb và bán kính 500 m. Kiểu này dùng cáp đồng trục loại thick ethernet (cáp đồng trục béo) với tranceiver. Có thể kết nối vào mạng khoảng 100 máy 40 Trung tâm Điện toán Truyền số liệu KV1
  42. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Hình 10. Kết nối theo chuẩn 10BASE5 Tranceiver:Thiết bị nối giữa card mạng và đường truyền, đóng vai trò là bộ thu-phát Hình 10. Nối mạng theo kiểu 10BASE5 với cáp sử dụng tranceiver Hình 11. Kết nối tối đa 3 phân đoạn mạng 41 Trung tâm Điện toán Truyền số liệu KV1
  43. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Đặc điểm của chuẩn 10BASE 5 Tốc độ tối đa 10 Mbps Chiều dài tối đa của đoạn cáp của một 500 m phân đoạn (segment) Số trạm tối đa trên mỗi đoạn 100 Khoảng cách giữa các trạm >=2,5 m (bội số của 2,5 m (giảm thiểu hiện tượng giao thoa do sóng đứng trên các đoạn ?)) Khoảng cách tối đa giữa máy trạm và 50 m đường trục chung Số đoạn kết nối tối đa 2 (=>tối đa có 3 phân đoạn) Tổng chiều dài tối đa đoạn kết nối (có 1000 m thể là một đoạn kết nối khi có hai phân đoạn, hoặc hai đoạn kết nối khi có ba phân đoạn) Tổng số trạm + các bộ lặp Repeater Không quá 1024 Chiều dài tối đa 3*500+1000=2500 m III.3.3. Kiểu 10BASE2: Là chuẩn CSMA/CD có tốc độ 10Mb và bán kính 200 m. Kiểu này dùng cáp đồng trục loại thin ethernet với đầu nối BNC. Có thể kết nối vào mạng khoảng 30 máy 42 Trung tâm Điện toán Truyền số liệu KV1
  44. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Hình11. Nối theo chuẩn 10BASE2 với cáp đồng trụcvà đầu nối BNC Đặc điểm của chuẩn 10BASE 2 Tốc độ tối đa 10 Mbps Chiều dài tối đa của đoạn cáp của một 185 m phân đoạn (segment) Số trạm tối đa trên mỗi đoạn 30 Khoảng cách giữa các trạm >=0,5 m Khoảng cách tối đa giữa máy trạm và 0 m đường trục chung Số đoạn kết nối tối đa 2 (=>tối đa có 3 phân đoạn) Tổng chiều dài tối đa đoạn kết nối (có 1000 m thể là một đoạn kết nối khi có hai phân đoạn, hoặc hai đoạn kết nối khi có ba phân đoạn) Tổng số trạm + các bộ lặp Repeater Không quá 1024 43 Trung tâm Điện toán Truyền số liệu KV1
  45. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng III.3.4. Kiểu 10BASE-T Là kiểu nối dùng HUB có các ổ nối kiểu K45 cho các cáp UTP. Ta có thể mở rộng mạng bằng cách tăng số HUB, nhưng cũng không được tăng quá nhiều tầng vì hoạt động của mạng sẽ kém hiệu quả nếu độ trễ quá lớn . Hình 12. Nối mạng theo kiểu 10BASE-T với cáp UTP và HUB Tốc độ tối đa 10 Mbps Chiều dài tối đa của đoạn cáp nối giữa 100 m máy tính và bộ tập trung HUB Hiện nay mô hình phiên bản 100BASE-T bắt đầu được sử dụng nhiều, tốc độ đạt tới 100 Mbps, với card mạng, cab mạng, hub đều phải tuân theo chuẩn 100BASE-T. 44 Trung tâm Điện toán Truyền số liệu KV1
  46. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng III.3.5. Kiểu 10BASE-F Dùng cab quang (Fiber cab), chủ yếu dùng nối các thiết bị xa nhau, tạo dựng đường trục xương sống (backborn) để nối các mạng LAN xa nhau (2-10 km) 45 Trung tâm Điện toán Truyền số liệu KV1
  47. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Chương 2 : Giới thiệu giao thức TCP/IP Chương hai cung cấp các kiến thức liên quan đến TCP/IP và địa chỉ IP. Giao thức TCP/IP trở thành giao thức mạng phổ biến nhất nhờ sự phát triển không ngừng của mạng Internet. Các mạng máy tính của các cơ quan, tổ chức, công ty hầu hết đều sử dụng TCP/IP làm giao thức mạng nhờ tính dễ mở rộng và qui hoạch của nó. Đồng thời, do sự phát triển của mạng Internet nên nhu cầu kết nối ra Internet và sử dụng TCP/IP đã trở nên thiết yếu cho mọi đối tượng Chương này đòi hỏi các học viên phải quen thuộc với các kiến thức cơ bản về hệ nhị phân, các khái niệm bit, byte, chuyển đổi nhị phân, thập phân. Các cách biểu diễn cấu trúc gói tin theo dạng trường bit, byte cũng yêu cầu học viên phải có được hiểu biết cơ sở về kỹ thuật thông tin truyền thông. I.1. Giao thức IP I.1.1. Họ giao thức TCP/IP Sự ra đời của họ giao thức TCP/IP gắn liền với sự ra đời của Internet mà tiền thân là mạng ARPAnet (Advanced Research Projects Agency) do Bộ Quốc phòng Mỹ tạo ra. Đây là bộ giao thức được dùng rộng rãi nhất vì tính mở của nó. Điều đó có nghĩa là bất cứ máy nào dùng bộ giao thức TCP/IP đều có thể nối được vào Internet. Hai giao thức được dùng chủ yếu ở đây là TCP (Transmission Control Protocol) và IP (Internet Protocol). Chúng đã nhanh chóng được đón nhận và phát triển bởi nhiều nhà nghiên cứu và các hãng công nghiệp máy tính với mục đích xây dựng và phát triển một mạng truyền thông mở rộng khắp thế giới mà ngày nay chúng ta gọi là Internet. Phạm vi phục vụ của Internet không còn dành cho quân sự như ARPAnet nữa mà nó đã mở rộng lĩnh vực cho mọi loại đối tượng sử dụng, trong đó tỷ lệ quan trọng nhất vẫn thuộc về giới nghiên cứu khoa học và giáo dục. Khái niệm giao thức (protocol) là một khái niệm cơ bản của mạng thông tin máy tính. Có thể hiểu một cách khái quát rằng đó chính là tập hợp tất cả các qui tắc cần thiết (các thủ tục, các khuôn dạng dữ liệu, các cơ chế phụ trợ ) cho phép các thao tác trao đổi thông tin trên mạng được thực hiện một cách chính xác và an toàn. Có rất nhiều họ giao thức đang được thực hiện trên mạng thông 46 Trung tâm Điện toán Truyền số liệu KV1
  48. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng tin máy tính hiện nay như IEEE 802.X dùng trong mạng cục bộ, CCITT X25 dùng cho mạng diện rộng và đặc biệt là họ giao thức chuẩn của ISO (tổ chức tiêu chuẩn hóa quốc tế) dựa trên mô hình tham chiếu bảy tầng cho việc nối kết các hệ thống mở. Gần đây, do sự xâm nhập của Internet vào Việt nam, chúng ta được làm quen với họ giao thức mới là TCP/IP mặc dù chúng đã xuất hiện từ hơn 20 năm trước đây. TCP/IP (Transmission Control Protocol/ Internet Protocol) TCP/IP là một họ giao thức cùng làm việc với nhau để cung cấp phương tiện truyền thông liên mạng được hình thành từ những năm 70. Đến năm 1981, TCP/IP phiên bản 4 mới hoàn tất và được phổ biến rộng rãi cho toàn bộ những máy tính sử dụng hệ điều hành UNIX. Sau này Microsoft cũng đã đưa TCP/IP trở thành một trong những giao thức căn bản của hệ điều hành Windows 9x mà hiện nay đang sử dụng. Đến năm 1994, một bản thảo của phiên bản IPv6 được hình thành với sự cộng tác của nhiều nhà khoa học thuộc các tổ chức Internet trên thế giới để cải tiến những hạn chế của IPv4. Khác với mô hình ISO/OSI tầng liên mạng sử dụng giao thức kết nối mạng "không liên kết" (connectionless) IP, tạo thành hạt nhân hoạt động của Internet. Cùng với các thuật toán định tuyến RIP, OSPF, BGP, tầng liên mạng IP cho phép kết nối một cách mềm dẻo và linh hoạt các loại mạng "vật lý" khác nhau như: Ethernet, Token Ring , X.25 Giao thức trao đổi dữ liệu "có liên kết" (connection - oriented) TCP được sử dụng ở tầng vận chuyển để đảm bảo tính chính xác và tin cậy việc trao đổi dữ liệu dựa trên kiến trúc kết nối "không liên kết" ở tầng liên mạng IP. Các giao thức hỗ trợ ứng dụng phổ biến như truy nhập từ xa (telnet), chuyển tệp (FTP), dịch vụ World Wide Web (HTTP), thư điện tử (SMTP), dịch vụ tên miền (DNS) ngày càng được cài đặt phổ biến như những bộ phận cấu thành của các hệ điều hành thông dụng như UNIX (và các hệ điều hành chuyên dụng cùng họ của các nhà cung cấp thiết bị tính toán như AIX của IBM, SINIX của Siemens, Digital UNIX của DEC), Windows9x/NT, Novell Netware, 47 Trung tâm Điện toán Truyền số liệu KV1
  49. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng OSI TCP/IP Application Application SMTP FTP TELNET DNS Presentation Session Transprort TCP UDP Network ICMP IGMP IP ARP RARP Data link Protocols defined by the underlying networks Physical Hình 2.1 Mô hình OSI và mô hình kiến trúc của TCP/IP Như vậy, TCP tương ứng với lớp 4 cộng thêm một số chức năng của lớp 5 trong họ giao thức chuẩn ISO/OSI. Còn IP tương ứng với lớp 3 của mô hình OSI. Trong cấu trúc bốn lớp của TCP/IP, khi dữ liệu truyền từ lớp ứng dụng cho đến lớp vật lý, mỗi lớp đều cộng thêm vào phần điều khiển của mình để đảm bảo cho việc truyền dữ liệu được chính xác. Mỗi thông tin điều khiển này được gọi là một header và được đặt ở trước phần dữ liệu được truyền. Mỗi lớp xem tất cả các thông tin mà nó nhận được từ lớp trên là dữ liệu, và đặt phần thông tin điều khiển header của nó vào trước phần thông tin này. Việc cộng thêm vào các header ở mỗi lớp trong quá trình truyền tin được gọi là encapsulation. Quá trình nhận dữ liệu diễn ra theo chiều ngược lại: mỗi lớp sẽ tách ra phần header trước khi truyền dữ liệu lên lớp trên. 48 Trung tâm Điện toán Truyền số liệu KV1
  50. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Mỗi lớp có một cấu trúc dữ liệu riêng, độc lập với cấu trúc dữ liệu được dùng ở lớp trên hay lớp dưới của nó. Sau đây là giải thích một số khái niệm thường gặp. Stream là dòng số liệu được truyền trên cơ sở đơn vị số liệu là Byte. Số liệu được trao đổi giữa các ứng dụng dùng TCP được gọi là stream, trong khi dùng UDP, chúng được gọi là message. Mỗi gói số liệu TCP được gọi là segment còn UDP định nghĩa cấu trúc dữ liệu của nó là packet. Lớp Internet xem tất cả các dữ liệu như là các khối và gọi là datagram. Bộ giao thức TCP/IP có thể dùng nhiều kiểu khác nhau của lớp mạng dưới cùng, mỗi loại có thể có một thuật ngữ khác nhau để truyền dữ liệu. Phần lớn các mạng kết cấu phần dữ liệu truyền đi dưới dạng các packets hay là các frames. Application Stream Transport Segment/datagram Internet Datagram Network Access Frame Cấu trúc dữ liệu tại các lớp của TCP/IP Lớp truy nhập mạng Network Access Layer là lớp thấp nhất trong cấu trúc phân bậc của TCP/IP. Những giao thức ở lớp này cung cấp cho hệ thống phương thức để truyền dữ liệu trên các tầng vật lý khác nhau của mạng. Nó định nghĩa cách thức truyền các khối dữ liệu (datagram) IP. Các giao thức ở lớp này phải biết chi tiết các phần cấu trúc vật lý mạng ở dưới nó (bao gồm cấu trúc gói số liệu, cấu trúc địa chỉ ) để định dạng được chính xác các gói dữ liệu sẽ được truyền trong từng loại mạng cụ thể. So sánh với cấu trúc OSI/OSI, lớp này của TCP/IP tương đương với hai lớp Datalink, và Physical. 49 Trung tâm Điện toán Truyền số liệu KV1
  51. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Chức năng định dạng dữ liệu sẽ được truyền ở lớp này bao gồm việc nhúng các gói dữ liệu IP vào các frame sẽ được truyền trên mạng và việc ánh xạ các địa chỉ IP vào địa chỉ vật lý được dùng cho mạng. Lớp liên mạng Internet Layer là lớp ở ngay trên lớp Network Access trong cấu trúc phân lớp của TCP/IP. Internet Protocol là giao thức trung tâm của TCP/IP và là phần quan trọng nhất của lớp Internet. IP cung cấp các gói lưu chuyển cơ bản mà thông qua đó các mạng dùng TCP/IP được xây dựng. I.1.2. Chức năng chính của - Giao thức liên mạng IP(v4) Trong phần này trình bày về giao thức IPv4 (để cho thuận tiện ta viết IP có nghĩa là đề cập đến IPv4). Mục đích chính của IP là cung cấp khả năng kết nối các mạng con thành liên mạng để truyền dữ liệu. IP cung cấp các chức năng chính sau: - Định nghĩa cấu trúc các gói dữ liệu là đơn vị cơ sở cho việc truyền dữ liệu trên Internet. - Định nghĩa phương thức đánh địa chỉ IP. - Truyền dữ liệu giữa tầng vận chuyển và tầng mạng . - Định tuyến để chuyển các gói dữ liệu trong mạng. - Thực hiện việc phân mảnh và hợp nhất (fragmentation -reassembly) các gói dữ liệu và nhúng / tách chúng trong các gói dữ liệu ở tầng liên kết. I.2. Địa chỉ IP Sơ đồ địa chỉ hoá để định danh các trạm (host) trong liên mạng được gọi là địa chỉ IP. Mỗi địa chỉ IP có độ dài 32 bits (đối với IP4) được tách thành 4 vùng (mỗi vùng 1 byte), có thể được biểu thị dưới dạng thập phân, bát phân, thập lục phân hoặc nhị phân. Cách viết phổ biến nhất là dùng ký pháp thập phân có dấu chấm để tách giữa các vùng. Mục đích của địa chỉ IP là để định danh duy nhất cho một host bất kỳ trên liên mạng. 50 Trung tâm Điện toán Truyền số liệu KV1
  52. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Có hai cách cấp phát địa chỉ IP, nó phụ thuộc vào cách ta kết nối mạng. Nếu mạng của ta kết nối vào mạng Internet, địa mạng chỉ được xác nhận bởi NIC (Network Information Center). Nếu mạng của ta không kết nối Internet, người quản trị mạng sẽ cấp phát địa chỉ IP cho mạng này. Còn các host ID được cấp phát bởi người quản trị mạng. Khuôn dạng địa chỉ IP: mỗi host trên mạng TCP/IP được định danh duy nhất bởi một địa chỉ có khuôn dạng - Phần định danh địa chỉ mạng Network Number - Phần định danh địa chỉ các trạm làm việc trên mạng đó Host Number Ví dụ 128.4.70.9 là một địa chỉ IP Do tổ chức và độ lớn của các mạng con của liên mạng có thể khác nhau, người ta chia các địa chỉ IP thành 5 lớp ký hiệu A,B,C, D, E với cấu trúc được xác định trên hình 2.2. Các bit đầu tiên của byte đầu tiên được dùng để định danh lớp địa chỉ (0- lớp A; 10 lớp B; 110 lớp C; 1110 lớp D; 11110 lớp E). - Lớp A cho phép định danh tới 126 mạng (sử dụng byte đầu tiên), với tối đa 16 triệu host (3 byte còn lại, 24 bits) cho mỗi mạng. Lớp này được dùng cho các mạng có số trạm cực lớn. Tại sao lại có 126 mạng trong khi dùng 8 bits? Lí do đầu tiên, 127.x (01111111) dùng cho địa chỉ loopback, thứ 2 là bit đầu tiên của byte đầu tiên bao giờ cũng là 0, 1111111(127). Dạng địa chỉ lớp A (network number. host.host.host). Nếu dùng ký pháp thập phân cho phép 1 đến 126 cho vùng đầu, 1 đến 255 cho các vùng còn lại. Hình 14. Cách đánh địa chỉ TCP/IP 51 Trung tâm Điện toán Truyền số liệu KV1
  53. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng - Lớp B cho phép định danh tới 16384 mạng (10111111.11111111.host.host), với tối đa 65535 host trên mỗi mạng. Dạng của lớp B (network number. Network number.host.host). Nếu dùng ký pháp thập phân cho phép 128 đến 191 cho vùng đầu, 1 đến 255 cho các vùng còn lại - Lớp C cho phép định danh tới 2.097.150 mạng và tối đa 254 host cho mỗi mạng. Lớp này được dùng cho các mạng có ít trạm. Lớp C sử dụng 3 bytes đầu định danh địa chỉ mạng (110xxxxx). Dạng của lớp C (network number. Network number.Network number.host). Nếu dùng dạng ký pháp thập phân cho phép 129 đến 233 cho vùng đầu và từ 1 đến 255 cho các vùng còn lại. - Lớp D dùng để gửi IP datagram tới một nhóm các host trên một mạng. Tất cả các số lớn hơn 233 trong trường đầu là thuộc lớp D - Lớp E dự phòng để dùng trong tương lai Như vậy địa chỉ mạng cho lớp: A: từ 1 đến 126 cho vùng đầu tiên, 127 dùng cho địa chỉ loopback, B từ 128.1.0.0 đến 191.255.0.0, C từ 192.1.0.0 đến 233.255.255.0 Ví dụ: 192.1.1.1 địa chỉ lớp C có địa chỉ mạng 192.1.1.0, địa chỉ host là 1 200.6.5.4 địa chỉ lớp C có địa chỉ mạng 200.6.5, địa chỉ mạng là 4 150.150.5.6 địa chỉ lớp B có địa chỉ mạng 150.150.0.0, địa chỉ host là 5.6 9.6.7.8 địa chỉ lớp A có địa chỉ mạng 9.0.0.0, địa chỉ host là 6.7.8 128.1.0.1 địa chỉ lớp B có địa chỉ mạng 128.1.0.0, địa chỉ host là 0.1 Subneting Trong nhiều trường hợp, một mạng có thể được chia thành nhiều mạng con (subnet), lúc đó có thể đưa thêm các vùng subnetid để định danh các mạng con. Vùng subnetid được lấy từ vùng hostid, cụ thể đối với 3 lớp A, B, C như sau: 52 Trung tâm Điện toán Truyền số liệu KV1
  54. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Netid Subnetid hostid Lớp A 0 7 8 15 16 23 24 31 Netid Subneti d hostid Lớp B 0 7 8 15 16 23 24 26 27 31 Netid Subnetid hostid Lớp C Hình 2.5 Bổ sung vùng subnetid Ví dụ: 17.1.1.1 địa chỉ lớp A có địa chỉ mạng 17, địa chỉ subnet 1, địa chỉ host 1.1 129.1.1.1 địa chỉ lớp B có địa chỉ mạng 129.1, địa chỉ subnet 1, địa chỉ host 1. I.3. Cấu trúc gói dữ liệu IP IP là giao thức cung cấp dịch vụ truyền thông theo kiểu “không liên kết” (connectionless). Phương thức không liên kết cho phép cặp trạm truyền nhận không cần phải thiết lập liên kết trước khi truyền dữ liệu và do đó không cần phải giải phóng liên kết khi không còn nhu cầu truyền dữ liệu nữa. Phương thức kết nối "không liên kết" cho phép thiết kế và thực hiện giao thức trao đổi dữ liệu đơn giản (không có cơ chế phát hiện và khắc phục lỗi truyền). Cũng chính vì vậy độ tin cậy trao đổi dữ liệu của loại giao thức này không cao. Các gói dữ liệu IP được định nghĩa là các datagram. Mỗi datagram có phần tiêu đề (header) chứa các thông tin cần thiết để chuyển dữ liệu (ví dụ địa chỉ IP của trạm đích). Nếu địa chỉ IP đích là địa chỉ của một trạm nằm trên cùng một mạng IP với trạm nguồn thì các gói dữ liệu sẽ được chuyển thẳng tới đích; nếu địa chỉ IP đích không nằm trên cùng một mạng IP với máy nguồn thì các gói dữ liệu sẽ được gửi đến một máy trung chuyển, IP gateway để chuyển tiếp. IP gateway là một thiết bị mạng IP đảm nhận việc lưu chuyển các gói dữ liệu IP giữa hai mạng IP khác nhau. Hình 2.3 mô tả cấu trúc gói số liệu IP. 53 Trung tâm Điện toán Truyền số liệu KV1
  55. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng - VER (4 bits) : chỉ Version hiện hành của IP được cài đặt. - IHL (4 bits) : chỉ độ dài phần tiêu đề (Internet Header Length) của datagram, tính theo đơn vị word (32 bits). Nếu không có trường này thì độ dài mặc định của phần tiêu đề là 5 từ. - Type of service (8 bits): cho biết các thông tin về loại dịch vụ và mức ưu tiên của gói IP, có dạng cụ thể như sau: Precedence D T R Unused Trong đó: Precedence (3 bits): chỉ thị về quyền ưu tiên gửi datagram, cụ thể là: 111 Network Control (cao nhất) 011- flash 110 Internetwork Control 010 Immediate 101 CRITIC/ECP 001 Priority 100 Flas Override 000 Routine (thấp nhất) D (delay) (1 bit) : chỉ độ trễ yêu cầu D=0 độ trễ bình thường, D=1 độ trễ thấp T (Throughput) (1 bit) : chỉ số thông lượng yêu cầu T=1 thông lượng bình thường T=1 thông lượng cao R (Reliability) (1 bit): chỉ độ tin cậy yêu cầu R=0 độ tin cậy bình thường R=1 độ tin cậy cao - Total Length (16 bits): chỉ độ dài toàn bộ datagram, kể cả phần header (tính theo đơn vị bytes), vùng dữ liệu của datagram có thể dài tới 65535 bytes. - Identification (16 bits) : cùng với các tham số khác như (Source Address và Destination Address) tham số này dùng để định danh duy nhất cho một datagram trong khoảng thời gian nó vẫn còn trên liên mạng 54 Trung tâm Điện toán Truyền số liệu KV1
  56. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Bit 0 Bit 31 VERS HLEN Service type Toltal length Identification Flags Fragment offset Time to live Protocol Header checksum Header Source IP address Destination IP address IP options (maybe none) Padding IP datagram data (up to 65535 bytes) Hình 15. Cấu trúc gói dữ liệu TCPIP - Flags (3 bits) : liên quan đến sự phân đoạn (fragment) các datagram. Cụ thể O DF MF Bit 0 : reserved chưa sử dụng luôn lấy giá trị 0 Bit 1 : (DF)= 0 (may fragment) 1 (Don’t Fragment) Bit 2 : (MF)= 0 (Last Fragment) 1 (More Fragment) - Fragment Offset (13 bits) : chỉ vị trí của đoạn (fragment) ở trong datagram, tính theo đơn vị 64 bits, có nghĩa là mỗi đoạn (trừ đoạn cuối cùng) phải chứa một vùng dữ liệu có độ dài là bội của 64 bits. - Time To Live (TTL-8 bits) : quy định thời gian tồn tại của một gói dữ liệu trên liên mạng để tránh tình trạng một datagram bị quẩn trên mạng. Giá trị này được đặt lúc bắt đầu gửi đi và sẽ giảm dần mỗi khi gói dữ liệu được xử lý tại những điểm trên đường đi của gói dữ liệu (thực chất là tại các router). Nếu giá trị này bằng 0 trước khi đến được đích, gói dữ liệu sẽ bị huỷ bỏ. - Protocol (8 bits): chỉ giao thức tầng kế tiếp sẽ nhận vùng dữ liệu ở trạm đích (hiện tại thường là TCP hoặc UDP được cài đặt trên IP). 55 Trung tâm Điện toán Truyền số liệu KV1
  57. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng - Header checksum (16 bits): mã kiểm soát lỗi sử dụng phương pháp CRC (Cyclic Redundancy Check) dùng để đảm bảo thông tin về gói dữ liệu được truyền đi một cách chính xác (mặc dù dữ liệu có thể bị lỗi). Nếu như việc kiểm tra này thất bại, gói dữ liệu sẽ bị huỷ bỏ tại nơi xác định được lỗi. Cần chú ý là IP không cung cấp một phương tiện truyền tin cậy bởi nó không cung cấp cho ta một cơ chế để xác nhận dữ liệu truyền tại điểm nhận hoặc tại những điểm trung gian. Giao thức IP không có cơ chế Error Control cho dữ liệu truyền đi, không có cơ chế kiểm soát luồng dữ liệu (flow control). - Source Address (32 bits): địa chỉ của trạm nguồn. - Destination Address (32 bits): địa chỉ của trạm đích. - Option (có độ dài thay đổi) sử dụng trong một số trường hợp, nhưng thực tế chúng rất ít dùng. Option bao gồm bảo mật, chức năng định tuyến đặc biệt - Padding (độ dài thay đổi): vùng đệm, được dùng để đảm bảo cho phần header luôn kết thúc ở một mốc 32 bits - Data (độ dài thay đổi): vùng dữ liệu có độ dài là bội của 8 bits, tối đa là 65535 bytes. I.4. Phân mảnh và hợp nhất các gói IP Các gói dữ liệu IP phải được nhúng trong khung dữ liệu ở tầng liên kết dữ liệu tương ứng, trước khi chuyển tiếp trong mạng. Quá trình nhận một gói dữ liệu IP diễn ra ngược lại. Ví dụ, với mạng Ethernet ở tầng liên kết dữ liệu quá trình chuyển một gói dữ liệu diễn ra như sau. Khi gửi một gói dữ liệu IP cho mức Ethernet, IP chuyển cho mức liên kết dữ liệu các thông số địa chỉ Ethernet đích, kiểu khung Ethernet (chỉ dữ liệu mà Ethernet đang mang là của IP) và cuối cùng là gói IP. Tầng liên kết số liệu đặt địa chỉ Ethernet nguồn là địa chỉ kết nối mạng của mình và tính toán giá trị checksum. Trường type chỉ ra kiểu khung là 0x0800 đối với dữ liệu IP. Mức liên kết dữ liệu sẽ chuyển khung dữ liệu theo thuật toán truy nhập Ethernet. Một gói dữ liệu IP có độ dài tối đa 65536 byte, trong khi hầu hết các tầng liên kết dữ liệu chỉ hỗ trợ các khung dữ liệu nhỏ hơn độ lớn tối đa của gói dữ liệu IP nhiều lần (ví dụ độ dài lớn nhất của một khung dữ liệu Ethernet là 56 Trung tâm Điện toán Truyền số liệu KV1
  58. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng 1500 byte). Vì vậy cần thiết phải có cơ chế phân mảnh khi phát và hợp nhất khi thu đối với các gói dữ liệu IP. Độ dài tối đa của một gói dữ liệu liên kết là MTU (Maximum Transmit Unit). Khi cần chuyển một gói dữ liệu IP có độ dài lớn hơn MTU của một mạng cụ thể, cần phải chia gói số liệu IP đó thành những gói IP nhỏ hơn để độ dài của nó nhỏ hơn hoặc bằng MTU gọi chung là mảnh (fragment). Trong phần tiêu đề của gói dữ liệu IP có thông tin về phân mảnh và xác định các mảnh có quan hệ phụ thuộc để hợp thành sau này. Ví dụ Ethernet chỉ hỗ trợ các khung có độ dài tối đa là 1500 byte. Nếu muốn gửi một gói dữ liệu IP gồm 2000 byte qua Ethernet, phải chia thành hai gói nhỏ hơn, mỗi gói không quá giới hạn MTU của Ethernet. Original IP packet 1. fragment 2.fragment 04 05 00 2000 04 05 00 1500 04 05 00 520 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 05 06 checksum 05 06 checksum 05 06 checksum 128.82.24.12 128.82.24.12 128.82.24.12 192.12.2.5 192.12.2.5 192.12.2.5 Data Data Data 1980 byte 1480 byte 500 byte Hình 16. Nguyên tắc phân mảnh gói dữ liệu P dùng cờ MF (3 bit thấp của trường Flags trong phần đầu của gói IP) và trường Flagment offset của gói IP (đã bị phân đoạn) để định danh gói IP đó là một phân đoạn và vị trí của phân đoạn này trong gói IP gốc. Các gói cùng trong chuỗi phân mảnh đều có trường này giống nhau. Cờ MF bằng 1 nếu là gói đầu của chuỗi phân mảnh và 0 nếu là gói cuối của gói đã được phân mảnh. Quá trình hợp nhất diễn ra ngược lại với quá trình phân mảnh. Khi IP nhận được một gói phân mảnh, nó giữ phân mảnh đó trong vùng đệm, cho đến khi nhận được hết các gói IP trong chuỗi phân mảnh có cùng trường định danh. Khi phân mảnh đầu tiên được nhận, IP khởi động một bộ đếm thời gian (giá trị 57 Trung tâm Điện toán Truyền số liệu KV1
  59. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng ngầm định là 15s). IP phải nhận hết các phân mảnh kế tiếp trước khi đồng hồ tắt. Nếu không IP phải huỷ tất cả các phân mảnh trong hàng đợi hiện thời có cùng trường định danh. Khi IP nhận được hết các phân mảnh, nó thực hiện hợp nhất các gói phân mảnh thành các gói IP gốc và sau đó xử lý nó như một gói IP bình thường. IP thường chỉ thực hiện hợp nhất các gói tại hệ thống đích của gói. I.5. Định tuyến IP Có hai loại định tuyến: - Định tuyến trực tiếp: Định tuyến trực tiếp là việc xác định đường nối giữa hai trạm làm việc trong cùng một mạng vật lý. - Định tuyến không trực tiếp. Định tuyến không trực tiếp là việc xác định đường nối giữa hai trạm làm việc không nằm trong cùng một mạng vật lý và vì vậy, việc truyền tin giữa chúng phải được thực hiện thông qua các trạm trung gian là các gateway. Để kiểm tra xem trạm đích có nằm trên cùng mạng vật lý với trạm nguồn hay không, người gửi phải tách lấy phần địa chỉ mạng trong phần địa chỉ IP. Nếu hai địa chỉ này có địa chỉ mạng giống nhau thì datagram sẽ được truyền đi trực tiếp; ngược lại phải xác định một gateway, thông qua gateway này chuyển tiếp các datagram. Khi một trạm muốn gửi các gói dữ liệu đến một trạm khác thì nó phải đóng gói datagram vào một khung (frame) và gửi các frame này đến gateway gần nhất. Khi một frame đến một gateway, phần datagram đã được đóng gói sẽ được tách ra và IP routing sẽ chọn gateway tiếp dọc theo đường dẫn đến đích. Datagram sau đó lại được đóng gói vào một frame khác và gửi đến mạng vật lý để gửi đến gateway tiếp theo trên đường truyền và tiếp tục như thế cho đến khi datagram được truyền đến trạm đích. Chiến lược định tuyến: Trong thuật ngữ truyền thống của TCP/IP chỉ có hai kiểu thiết bị, đó là các cổng truyền (gateway) và các trạm (host). Các cổng truyền có vai trò gửi các gói dữ liệu, còn các trạm thì không. Tuy nhiên khi một trạm được nối với nhiều mạng thì nó cũng có thể định hướng cho việc lưu chuyển các gói dữ liệu giữa các mạng và lúc này nó đóng vai trò hoàn toàn như một gateway. 58 Trung tâm Điện toán Truyền số liệu KV1
  60. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Các trạm làm việc lưu chuyển các gói dữ liệu xuyên suốt qua cả bốn lớp, trong khi các cổng truyền chỉ chuyển các gói đến lớp Internet là nơi quyết định tuyến đường tiếp theo để chuyển tiếp các gói dữ liệu. Các máy chỉ có thể truyền dữ liệu đến các máy khác nằm trên cùng một mạng vật lý. Các gói từ A1 cần chuyển cho C1 sẽ được hướng đến gateway G1 và G2. Trạm A1 đầu tiên sẽ truyền các gói đến gateway G1 thông qua mạng A. Sau đó G1 truyền tiếp đến G2 thông qua mạng B và cuối cùng G2 sẽ truyền các gói trực tiếp đến trạm C1, bởi vì chúng được nối trực tiếp với nhau thông qua mạng C. Trạm A1 không hề biết đến các gateway nằm ở sau G1. A1 gửi các gói số liệu cho các mạng B và C đến gateway cục bộ G1 và dựa vào gateway này để định hướng tiếp cho các gói dữ liệu đi đến đích. Theo cách này thì trạm C1 trước tiên sẽ gửi các gói của mình đến cho G2 và G2 sẽ gửi đi tiếp cho các trạm ở trên mạng A cũng như ở trên mạng B. Hình vẽ sau mô tả việc dùng các gateway để gửi các gói dữ liệu: Host A1 Host C1 Application Gateway Gateway Application Transport Transport Internet Internet Network Network Access Internet Internet Access Network Network Network A Network B Network C Hình 17. Định tuy ến giữa hai hệ thống Việc phân mảnh các gói dữ liệu: Trong quá trình truyền dữ liệu, một gói dữ liệu (datagram) có thể được truyền đi thông qua nhiều mạng khác nhau. Một gói dữ liệu (datagram) nhận được từ một mạng nào đó có thể quá lớn để truyền đi trong gói đơn ở trên một mạng khác, bởi mỗi loại cấu trúc mạng cho phép một đơn vị truyền cực đại (Maximum Transmit Unit - MTU), khác nhau. Đây chính là kích thước lớn nhất của một gói mà chúng có thể truyền. Nếu như một gói dữ liệu nhận được từ một mạng nào đó mà lớn hơn MTU của một mạng 59 Trung tâm Điện toán Truyền số liệu KV1
  61. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng khác thì nó cần được phân mảnh ra thành các gói nhỏ hơn, gọi là fragment. Quá trình này gọi là quá trình phân mảnh. Dạng của một fragment cũng giống như dạng của một gói dữ liệu thông thường. Từ thứ hai trong phần header chứa các thông tin để xác định mỗi fragment và cung cấp các thông tin để hợp nhất các fragment này lại thành các gói như ban đầu. Trường identification dùng để xác định fragment này là thuộc về gói dữ liệu nào. I.6. Một số giao thức điều khiển I.6.1. Giao thức ICMP ICMP ((Internet Control Message Protocol) là một giao thức điều khiển của mức IP, được dùng để trao đổi các thông tin điều khiển dòng số liệu, thông báo lỗi và các thông tin trạng thái khác của bộ giao thức TCP/IP. Ví dụ: - Điều khiển lưu lượng dữ liệu (Flow control): khi các gói dữ liệu đến quá nhanh, thiết bị đích hoặc thiết bị định tuyến ở giữa sẽ gửi một thông điệp ICMP trở lại thiết bị gửi, yêu cầu thiết bị gửi tạm thời ngừng việc gửi dữ liệu. - Thông báo lỗi: trong trường hợp địa chỉ đích không tới được thì hệ thống sẽ gửi một thông báo lỗi "Destination Unreachable". - Định hướng lại các tuyến đường: một thiết bị định tuyến sẽ gửi một thông điệp ICMP "định tuyến lại" (Redirect Router) để thông báo với một trạm là nên dùng thiết bị định tuyến khác để tới thiết bị đích. Thông điệp này có thể chỉ được dùng khi trạm nguồn ở trên cùng một mạng với cả hai thiết bị định tuyến. - Kiểm tra các trạm ở xa: một trạm có thể gửi một thông điệp ICMP "Echo" để kiểm tra xem một trạm có hoạt động hay không. Sau đây là mô tả một ứng dụng của giao thức ICMP thực hiện việc định tuyến lại (Redirect): Ví dụ: giả sử host gửi một gói dữ liệu IP tới Router R1. Router R1 thực hiện việc quyết định tuyến vì R1 là router mặc định của host đó. R1 nhận gói dữ liệu và tìm trong bảng định tuyến và nó tìm thấy một tuyến tới R2. Khi R1 gửi gói dữ liệu tới R2 thì R1 phát hiện ra rằng nó đang gửi gói dữ liệu đó ra ngoài trên cùng một giao diện mà gói dữ liệu đó đã đến (là giao diện mạng 60 Trung tâm Điện toán Truyền số liệu KV1
  62. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng LAN mà cả host và hai Router nối đến). Lúc này R1 sẽ gửi một thông báo ICMP Redirect Error tới host, thông báo cho host nên gửi các gói dữ liệu tiếp theo đến R2 thì tốt hơn. Host (1) IP datagram (3) ICMP Redirect (2) IP datagram R2 R1 Host Final destination Tác dụng của ICMP Redirect là để cho mọt host với nhận biết tối thiểu về định tuyến xây dựng lên một bảng định tuyến tốt hơn theo thời gian. Host đó có thể bắt đầu với một tuyến mặc định (có thể R1 hoặc R2 như ví dụ trên) và bất kỳ lần nào tuyến mặc định này được dùng với host đó đến R2 thì nó sẽ được Router mặc định gửi thông báo Redirect để cho phép host đó cập nhật bảng định tuyến của nó một cách phù hợp hơn. Khuôn dạng của thông điệp ICMP redirect như sau: 0 7 8 15 16 31 type (5) Code(0-3) Checksum Địa chỉ IP của Router mặc định IP header (gồm option) và 8 bytes đầu của gói dữ liệu IP nguồn Dạng thông điệp ICMP redirect 61 Trung tâm Điện toán Truyền số liệu KV1
  63. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Có bốn loại thông báo ICMP redirect khác nhau với các giá trị mã (code) như bảng sau: Code Description 0 Redirect cho mạng 1 Redirect cho host 2 Redirect cho loại dịch vụ (TOS) và mạng 3 Redirect cho loại dịch vụ và host Các loại định hướng lại của gói dữ liệu ICMP Redirect chỉ xảy ra khi cả hai Router R1 và R2 cùng nằm trên một mạng với host nhận direct đó. I.6.2. Giao thức ARP và giao thức RARP Địa chỉ IP được dùng để định danh các host và mạng ở tầng mạng của mô hình OSI, chúng không phải là các địa chỉ vật lý (hay địa chỉ MAC) của các trạm đó trên một mạng cục bộ (Ethernet, Token Ring, ). Trên một mạng cục bộ hai trạm chỉ có thể liên lạc với nhau nếu chúng biết địa chỉ vật lý của nhau. Như vậy vấn đề đặt ra là phải thực hiện ánh xạ giữa địa chỉ IP (32 bits) và địa chỉ vật lý (48 bits) của một trạm. Giao thức ARP (Address Resolution Protocol) đã được xây dựng để chuyển đổi từ địa chỉ IP sang địa chỉ vật lý khi cần thiết. Ngược lại, giao thức RARP (Reverse Address Resolution Protocol) được dùng để chuyển đổi địa chỉ vật lý sang địa chỉ IP. Các giao thức ARP và RARP không phải là bộ phận của IP mà IP sẽ dùng đến chúng khi cần. Giao thức ARP Giao thức TCP/IP sử dụng ARP để tìm địa chỉ vật lý của trạm đích. Ví dụ khi cần gửi một gói dữ liệu IP cho một hệ thống khác trên cùng một mạng vật lý Ethernet, hệ thông gửi cần biết địa chỉ Ethernet của hệ thống đích để tầng liên kết dữ liệu xây dựng khung gói dữ liệu. 62 Trung tâm Điện toán Truyền số liệu KV1
  64. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng Thông thường, mỗi hệ thống lưu giữ và cập nhật bảng thích ứng địa chỉ IP-MAC tại chỗ (còn được gọi là bảng ARP cache). Bảng thích ứng địa chỉ được cập nhật bởi người quản trị hệ thống hoặc tự động bởi giao thức ARP sau mỗi lần ánh xạ được một địa chỉ thích ứng mới. Khuôn dạng của gói dữ liệu ARP được mô tả trong hình 0 31 Data link type Network type Hlen plen Opcode Sender data link (6byte for Ethernet) Sender network (4 byte for IP) Tagret data link (6 byte) Tagret network (4 byte) Check sume Mô tả khuôn dạng của gói ARP - Data link type: cho biết loại công nghệ mạng mức liên kết (ví dụ đối với mạng Ethernet trường này có giá trị 01). - Network type: cho biết loại mạng (ví dụ đối với mạng IPv4, trường này có giá trị 080016). - Hlen (hardware length): độ dài địa chỉ mức liên kết (6 byte). - Plen (Protocol length): cho biết độ dài địa chỉ mạng (4 byte) - Opcode (operation code): mã lệnh yêu cầu: ; mã lệnh trả lời . - Sender data link: địa chỉ mức liên kết của thiết bị phát gói dữ liệu này. - Sender network : địa chỉ IP của thiết bị phát. - Tagret data link: trong yêu cầu đây là địa chỉ mức liên kết cần tìm (thông thường được điền 0 bởi thiết bị gửi yêu cầu); trong trả lời đây là địa chỉ mức liên kết của thiết bị gửi yêu cầu. - Tagret network : trong yêu cầu đây là địa chỉ IP mà địa chỉ mức liên kết tương ứng cần tìm; trong trả lời đây là địa chỉ IP của thiết bị gửi yêu cầu. Mỗi khi cần tìm thích ứng địa chỉ IP - MAC, có thể tìm địa chỉ MAC tương ứng với địa IP đó trước tiên trong bảng địa chỉ IP - MAC ở mỗi hệ 63 Trung tâm Điện toán Truyền số liệu KV1
  65. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng thống. Nếu không tìm thấy, có thể sử dụng giao thức ARP để làm việc này. Trạm làm việc gửi yêu cầu ARP (ARP_Request) tìm thích ứng địa chỉ IP - MAC đến máy phục vụ ARP - server. Máy phục vụ ARP tìm trong bảng thích ứng địa chỉ IP - MAC của mình và trả lời bằng ARP_Response cho trạm làm việc. Nếu không, máy phục vụ chuyển tiếp yêu cầu nhận được dưới dạng quảng bá cho tất cả các trạm làm việc trong mạng. Trạm nào có trùng địa chỉ IP được yêu cầu sẽ trả lời với địa chỉ MAC của mình. Tóm lại tiến trình của ARP được mô tả như sau 1 IP ARP request 2,5 4 IP ARP request IP ARP request 129.1.1.1 Tiến trình ARP 1. IP yêu cầu địa chỉ MAC. 2. Tìm kiếm trong bảng ARP. 3. Nếu tìm thấy sẽ trả lại địa chỉ MAC. 4. Nếu không tìm thấy, tạo gói ARP yêu cầu và gửi tới tất cả các trạm. 5. Tuỳ theo gói dữ liệu trả lời, ARP cập nhật vào bảng ARP và gửi địa chỉ MAC đó cho IP. Giao thức RARP Reverse ARP (Reverse Address Resolution Protocol) là giao thức giải thích ứng địa chỉ AMC - IP. Quá trình này ngược lại với quá trình giải thích ứng địa chỉ IP - MAC mô tả ở trên, nghĩa là cho trước địa chỉ mức liên kết, tìm địa chỉ IP tương ứng. 64 Trung tâm Điện toán Truyền số liệu KV1
  66. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng I.2. Giao thức lớp chuyển tải (Transport Layer) I.2.1. Giao thức TCP TCP (Transmission Control Protocol) là một giao thức “có liên kết” (connection - oriented), nghĩa là cần thiết lập liên kết (logic), giữa một cặp thực thể TCP trước khi chúng trao đổi dữ liệu với nhau. TCP cung cấp khả năng truyền dữ liệu một cách an toàn giữa các máy trạm trong hệ thống các mạng. Nó cung cấp thêm các chức năng nhằm kiểm tra tính chính xác của dữ liệu khi đến và bao gồm cả việc gửi lại dữ liệu khi có lỗi xảy ra. TCP cung cấp các chức năng chính sau: 1. Thiết lập, duy trì, kết thúc liên kết giữa hai quá trình. 2. Phân phát gói tin một cách tin cậy. 3. Đánh số thứ tự (sequencing) các gói dữ liệu nhằm truyền dữ liệu một cách tin cậy. 4. Cho phép điều khiển lỗi. 5. Cung cấp khả năng đa kết nối với các quá trình khác nhau giữa trạm nguồn và trạm đích nhất định thông qua việc sử dụng các cổng. 6. Truyền dữ liệu sử dụng cơ chế song công (full-duplex). I.2.2 Cấu trúc gói dữ liệu TCP 0 31 Source port Destination port Sequence number Acknowledgment number Data Resersed U A P R S F Offset R C S S Y I Window G K H T N N Checksum Urgent pointer Options Padding TCP data Khuôn dạng của TCP segment 65 Trung tâm Điện toán Truyền số liệu KV1
  67. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng - Source port (16 bits) : số hiệu cổng của trạm nguồn - Destination port (16 bits) : số hiệu cổng của trạm đích - Sequence Number (32 bits): số hiệu của byte đầu tiên của segment trừ khi bit SYN được thiết lập. Nếu bit SYN được thiết lập thì Sequence Number là số hiệu tuần tự khởi đầu (ISN) và byte dữ liệu đầu tiên là ISN +1. - Acknowlegment: vị trí tương đối của byte cuối cùng đã nhận đúng bởi thực thể gửi gói ACK cộng thêm 1. Giá trị của trường này còn được gọi là số tuần tự thu. Trường này được kiểm tra chỉ khi bit ACK=1. - Data offset (4 bits) : số tượng từ 32 bit trong TCP header. Tham số này chỉ ra vị trí bắt đầu của vùng dữ liệu - Reserved (6 bits) : dành để dùng trong tương lai. Phải được thiết lập là 0. - Control bits : các bit điều khiển - URG : vùng con trỏ khẩn (Urgent Pointer) có hiệu lực. - ACK : vùng báo nhận (ACK number) có hiệu lực. - PSH : chức năng Push. PSH=1 thực thể nhận phải chuyển dữ liệu này cho ứng dụng tức thời. - RST : thiết lập lại (reset) kết nối. - SYN : đồng bộ hoá các số hiệu tuần tự, dùng để thiết lập kết nối TCP. - FIN : thông báo thực thể gửi đã kết thúc gửi dữ liệu. - Window (16 bits): cấp phát credit để kiểm soát luồng dữ liệu (cơ chế của sổ). Đây chính là số lượng các byte dữ liệu, bắt đầu từ byte được chỉ ra trong vùng ACK number, mà trạm nguồn đã sẵn sàng để nhận - Checksum (16 bits) : mã kiểm soát lỗi (theo phương pháp CRC) cho toàn bộ segment (header + data) - Urgent pointer (16 bits) : con trỏ này trỏ tới số hiệu tuần tự của byte đi theo sau dữ liệu khẩn, cho phép bên nhận biết được độ dài của dữ liệu khẩn. Vùng này chỉ có hiệu lực khi bit URG được thiết lập - Options (độ dài thay đổi): khai báo các option của TCP, trong đó có độ dài tối đa của vùng TCP data trong một segment 66 Trung tâm Điện toán Truyền số liệu KV1
  68. Giáo trình đào tạo Quản trị mạng và các thiết bị mạng - Padding (độ dài thay đổi) : phần chèn thêm vào header để bảo đảm phần header luôn kết thúc ở một mốc 32 bits. Phần thêm này gồm toàn số 0. - TCP data (độ dài thay đổi) : chứa dữ liệu của tầng trên, có độ dài tối đa ngầm định là 536 bytes. Giá trị này có thể điều chỉnh bằng cách khai báo trong vùng options. Một tiến trình ứng dụng trong một host truy nhập vào các dịch vụ của TCP cung cấp thông qua một cổng (port) như sau: Một cổng kết hợp với một địa chỉ IP tạo thành một socket duy nhất trong liên mạng. TCP được cung cấp nhờ một liên kết logic giữa một cặp socket. Một socket có thể tham gia nhiều liên kết với các socket ở xa khác nhau. Trước khi truyền dữ liệu giữa hai trạm cần phải thiết lập một liên kết TCP giữa chúng và khi kết thúc phiên truyền dữ liệu thì liên kết đó sẽ được giải phóng. Cũng giống như ở các giao thức khác, các thực thể ở tầng trên sử dụng TCP thông qua các hàm dịch vụ nguyên thuỷ (service primitives), hay còn gọi là các lời gọi hàm (function call). Userprocess Userprocess 1 2 3 1 2 TCP TCP IP IP NAP NAP Host Host Internet NAP: Network Access Protocol Cổng truy nhập dịch vụ TCP I.2.3. Thiết lập và kết thúc kết nối TCP Thiết lập kết nối Thiết lập kết nối TCP được thực hiện trên cơ sở phương thức bắt tay ba bước (Tree - way Handsake) hình 2.11. Yêu cầu kết nối luôn được tiến trình trạm khởi tạo, bằng cách gửi một gói TCP với cờ SYN=1 và chứa giá trị khởi 67 Trung tâm Điện toán Truyền số liệu KV1