Ứng dụng rơle so lệch trở kháng thấp 7SS601 để bảo vệ cho thanh góp trong hệ thống điện

pdf 7 trang hapham 2850
Bạn đang xem tài liệu "Ứng dụng rơle so lệch trở kháng thấp 7SS601 để bảo vệ cho thanh góp trong hệ thống điện", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfung_dung_role_so_lech_tro_khang_thap_7ss601_de_bao_ve_cho_th.pdf

Nội dung text: Ứng dụng rơle so lệch trở kháng thấp 7SS601 để bảo vệ cho thanh góp trong hệ thống điện

  1. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 ỨNG DỤNG RƠLE SO LỆCH TRỞ KHÁNG THẤP 7SS601 ĐỂ BẢO VỆ CHO THANH GÓP TRONG HỆ THỐNG ĐIỆN AN APPLICATION OF LOW 7SS601 IMPEDANCE TO THE BUSBAR DIFFERENTIAL PROTECTION IN THE POWER SYSTEM Lê Kim Hùng Đại học Đà Nẵng Vũ Phan Huấn Trung tâm thí nghiệm điện 3 TÓM TẮT Thanh góp là phần tử quan trọng trong hệ thống điện, bởi đây chính là đầu mối liên hệ của nhiều phần tử khác nhau trong hệ thống, nên khi xảy ra ngắn mạch trên thanh góp nếu không được rơle bảo vệ so lệch thanh góp loại trừ một cách nhanh chóng và tin cậy thì có thể gây ra những hậu quả nghiêm trọng và làm tan rã hệ thống. Bài báo trình bày cách tính chọn số vòng dây của biến dòng phụ trung gian và thông số chỉnh định của rơle 7SS601, đồng thời ứng dụng rơle này để bảo vệ hệ thống thanh góp cho trạm biến áp 110kV Điện Nam – Điện Ngọc. ABSTRACT A busbar is a very important component in a power distribution network. It forms an electrical ‘node’ where many circuits come together, feeding in and sending out power. Faults on the busbar do not pose risks of equipment damage and fall to a power system if some form of busbar differential protection is used for quickly detecting and clearing of a fault on the system. This paper presents some general procedures on the calculation and selection of how to set the wiring number of auxiliary circuit transformer, a basic setting criteria for the low 7SS601 impedance busbar differential protection. In addition, we also suggest an application of this impedance to Dien Nam - Dien Ngoc 110kV Power Substation. 1. Đặt vấn đề Để bảo vệ thanh góp chống các dạng ngắn mạch người ta dùng bảo vệ so lệch, trong đó loại rơ le so lệch 7SS610 được sử dụng phổ biến để bảo vệ thanh góp tại các trạm biến áp. Tuy nhiên, khi thực hiện bảo vệ so lệch thanh góp có thể do các sai số biến dòng (CT), tỷ số biến CT khác nhau nên khi đưa dòng nhị thứ CT vào cổng dòng của rơle 7SS601 thì có thể gây ra tác động nhầm trong điều kiện làm việc bình thường. Vì thế, ta cần phải cài đặt giá trị chỉnh định rơle và tính chọn cách đấu dây biến dòng trung gian hợp lý trước khi đưa vào rơle [1], [3]. 2. Bảo vệ so lệch thanh góp tổng trở thấp Bảo vệ so lệch làm việc dựa trên định luật Kirchhoff 1. Nếu xem các CT hoàn toàn giống nhau thì ở chế độ ngắn mạch ngoài hoặc chế độ vận hành bình thường, tổng 28
  2. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 dòng điện so lệch (dòng không cân bằng) đi vào rơle so lệch phải gần bằng 0. Khi phát hiện có sự cố trong vùng đối tượng bảo vệ, rơle cho đi cắt MC với thời gian rất bé, khoảng (10 ÷ 20) ms. Công thức tính dòng so lệch và dòng hãm đối với rơle họ 7SS601 như sau [4]: Dòng so lệch: IDiff = |I1 + I2+ . In | Dòng hãm: IBias = |I1| + |I2 |+ .|In| Sơ đồ minh họa hệ thống hai thanh góp (TG) sử dụng rơle 7SS601 cho trên hình 1 gồm có 2 ngăn lộ 131,132 (có tỷ số biến CT 400/1A), 2 ngăn lộ 171,172 (có tỷ số biến CT 1000/1A) và mạch TG 100 (có ỷt số biến CT 600/1A) sử dụng biến dòng phụ 4AM5120-3DA (có dòng ơs cấp định mức 1A). Dòng thứ cấp 100mA của các biến dòng phụ được đưa vào cổng dòng so lệch rơle F87B1 của thanh góp 1, F87B2 của thanh góp 2 và khối dòng hãm 7TM7 0. Khối dòng hãm có tác dụng tạo dòng hãm đưa vào cổng dòng hãm của rơle F87B1 và F87B2. Rơle trung gian 7TR71 có tácụng d chuyển đổi mạch dòng cấp cho F87B1 và F87B2 khi MC 100 đóng hoặc cắt. Hình 1: Sơ đồ bảo vệ so lệch thanh góp dùng rơle 7SS601 Khi có sự cố trên một thanh góp của hệ thống, theo yêu cầu chọn lọc, bảo vệ rơle phải cắt tất cả các máy cắt nối tới thanh góp đó [1],[3]. - Trong trường hợp MC 100 mở thì cả hai TG 1 và TG 2 làm việc độc lập. Nếu có sự cố tại N1 trên TG 1 (hoặc tại N2 trên TG 2), thì F87B1 cắt MC 171, MC 131 nối đến TG 1 (hoặc F87B2 cắt MC 172, MC 132 nối đến TG 2) . Trong trường 29
  3. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 hợp có sự cố tại N3 nằm giữa MC 100 và CT của MC 100 thì thanh góp 1 sẽ coi đó là sự cố trong vùng bảo vệ và F87B1 cắt MC 171, MC 131. - Trong trường hợp MC 100 đóng thì khi có sự cố tại N1 trên TG 1 (hoặc tại N2 trên TG 2) thì F87B1 cắt MC 171, MC 131 nối đến thanh góp 1 (hoặc F87B2 cắt MC 172, MC 132 nối đến TG 2) và MC 100. Còn trong trường hợp xẩy ra sự tại N3 nằm giữa MC 100 và CT của MC 100 thì MC 171, MC 131, MC 172, MC 132 và MC 100 cắt ra. 3. Biến dòng phụ và tỷ số CT lệch nhau Để giảm ảnh hưởng của dòng không cân bằng, nhằm nâng cao độ nhạy cho bảo vệ, bảo vệ so lệch thanh góp có dùng biến dòng phụ để tạo ra dòng tổng đưa vào rơ le. Giá trị này phụ thuộc vào tỷ số vòng dây giữa các cuộn. Theo đề nghị của nhà chế tạo, để đảm bảo độ nhạy cả khi có sự cố chạm đất, sự cố 2 và 3 pha (xem hình 2) nên chọn số vòng theo quan hệ [2]: Wp1 : Wp2 : Wp3 = 2:1:3 hoặc tỷ số dòng điện nhất thứ của biến dòng phụ là IL1:IL2:IL3 = 5:3:4. Dòng điện đầu ra của biến dòng phụ tính theo công thức [3]: iS = iL1 + iL2 + iL3 WP1 +WP3 j0 iL1 = iP . .e (1) WS WP3 j120 iL2 = iP . .e (2) WS WP2 +WP3 j240 iL3 = iP . .e (3) WS Trong đó: - WS = 500 – Cuộn dây nhị thứ của CT phụ. - WP1, WP2, WP3 – Cuộn dây nhất thứ của CT phụ. - iS – Dòng nhị thứ của CT phụ. - iP – Dòng nhị thứ định mức của CT Hình 2: Sơ đồ đấu nối của biến dòng phụ, đồ thị chính. véc tơ của biến dòng chính và biến dòng phụ. Ví dụ: hệ thống thanh góp trên hình 1 gồm 05 ngăn lộ có tỷ số biến 400/1, 600/1 và 1000/1. Nếu không chọn cách đấu nối hợp lý của biến dòng phụ thì dòng so lệch đi vào rơle sẽ lớn, có thể làm rơle tác động nhầm trong điều kiện làm việc bình thường hoặc khi có ngắn mạch ngoài. Cho nên, ta phải dựa vào tài liệu kỹ thuật của rơle bảo vệ so lệch trở kháng thấp 7SS601 và biến dòng trung gian loại 4MA5120 -3DA để tính toán chọn cách đấu nối phù hợp theo trình tự sau: 30
  4. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 Bước 1: Chọn ước số chung nhỏ nhất của các tỷ số biến CT có kết quả nhỏ hơn 10. Lấy kết quả phép chia đó làm chỉ dẫn đấu nối cho CT trung gian. Tra theo chỉ dẫn chọn tỷ số biến trung gian loại 4MA5120-3DA trong tài liệu [3] cho kết quả dưới đây: Ước số chung Tỷ số biến CT W - W - W Pha Đấu nối Dây cầu nhỏ nhất P1 P2 P3 L1 J,K B-E 400/1 4 24 – 12 – 36 L3 A,F N L,M L1 A,K B-E; F-J 600/1 6 36 – 18 – 54 L3 G,H L-N N M,O L1 J,M K-L 1000/1 10 60 – 30 – 90 L3 A,H B-E; F-G N N,O Bước 2: Trường hợp CT 400/1: Thế các giá trị iP =1, WP1 = 24, WP2 = 12,WP3 =36 và WS =500 vào công thức (1),(2), (3). WP1 +WP3 j0 60 j0 j0 iL1 = iP × × e = 1× × e = 0,12e WS 500 WP3 j120 36 j120 j120 iL2 = iP × × e = 1× × e = 0,072e WS 500 WP2 +WP3 j240 48 j240 j240 iL3 = iP × × e = 1× × e = 0,096 WS 500 − j30 iS (400) = iL1 + iL2 + iL3 = 0,0415e Tiếp tục tính cho trường hợp CT 600/1 và CT 1000/1 đem lại kết quả trên hình 3. Hình 3: Kết quả tính chọn cách đấu nối CT phụ 31
  5. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 4. Ứng dụng rơle 7SS601 cho bảo vệ thanh góp tại TBA 110KV Điện Nam – Điện Ngọc Tương tự các bước tính toán trên ta áp dụng vào thanh góp 110kV gồm 04 ngăn lộ có tỷ số biến 300/1 và 02 ngăn lộ có tủ số biến 400/1 tại TBA 110kV Điện Nam – Điện Ngọc (xem hình 4). A B C 300A 300A 0,0625A 0,0625A 1A 0,75A * A Y * A Y 36 48 K M CT - 5P20 * CT - 5P20 * * * 300/1A G 400/1A J 18 500 24 500 H K M H 54 72 O X O X 4AM5120-3DA 4AM5120-3DA XT E05, E06, E07, XT E02, MBA T2 MBA T1 Hình 4: Sơ đồ đấu nối CT thanh góp 110kV TBA Điện Nam - Điện Ngọc Bước 1: Chọn chỉ dẫn đấu nối cho CT trung gian Ước số chung Tỷ số biến CT WP1 - WP2 - WP3 Pha Đấu nối Dây cầu nhỏ nhất L1 A,K B-E; F-J 300/1 6 36-18-52 L3 G,H L-N N M,O L1 A,M B-E; F-L 400/1 8 48-24-72 L3 J,K G-N N H,O Bước 2: Kiểm tra dòng nhị thứ vào cổng dòng rơle Trường hợp 300/1 Trường hợp 400/1 36 + 54 48 + 72 i = 1× × e j0 = 0,18e j0 i = 0,75× × e j0 = 0,18e j0 L1 500 L1 500 54 72 i = 1× × e j120 = 0,108e j120 i = 0,75× × e j120 = 0,108e j120 L2 500 L2 500 18 + 54 24 + 72 i = 1× × e j240 = 0,144e j240 i = 0,75× × e j240 = 0,144e j240 L3 500 L3 500 − j30 − j30 iS (300) = iL1 + iL2 + iL3 = 0,0625e iS (00) = iL1 + iL2 + iL3 = 0,0625e 32
  6. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 − j30 Qua kết quả tính toán trên, ta thấy iS (300) = iS (400) = 0,0625e đảm bảo không có dòng so ệchl vào cho rơ le 7SS601 tron g điều kiện bình thường hoặc có ngắn mạch ngoài. Với các thông số đã tính toán, sau khi đưa vào vận hành cho đến nay rơle làm việc ổn định và tin cậy. 5. Thông số chỉnh định rơle Theo tài liệu [3], [4] ta các thông số chỉnh định rơle 7SS601 gồm: - Dòng khởi động của bảo vệ chọn theo 2 điều kiện: Điều kiện 1: theo dòng phụ tải cực đại (IptMAX) khi đứt mạch thứ cấp CT. id > ≥ 1,2.I ptMAX Điều kiện 2: theo dòng điện ngắn mạch nhỏ nhất (IscMIN). id > ≥ 0,5.I scMIN Trong hai điều kiện trên, điều kiện nào cho dòng điện khởi động khởi động lớn hơn thì chọn làm dòng khởi động tính toán. - Độ dốc hãm k = 0,25 ÷ 0,8 giúp rơle loại trừ các sai số CT, sai số đo lường và chống lại các sự cố từ bên ngoài. - Ngưỡng dòng giám sát mạch nhị thứ CT IdCTs> dùng để loại trừ khả năng đứt mạch nhị thứ CT làm dòng so lệch Hình 5. Đặc tính so lệch rơle 7SS601 xuất hiện. Nếu mạch nhị thứ CT bị đứt, bảo vệ so lệch bị khóa và đưa tín hiệu cảnh báo. 6. Kết luận Với mục đích ứng dụng rơle kỹ thuật số 7SS601 để bảo vệ so lệch thanh góp, ta cần bắt đầu từ việc tìm hiểu cách cài đặt rơle, nghiên cứu và phân tích những tài liệu kỹ thuật của nhà sản xuất, bản vẽ thiết kế và cuối cùng là thử nghiệm và hiệu chỉnh. Bài báo đã trình bày nguyên lý làm việc của hệ thống bảo vệ so lệch thanh góp cách tính toán các thông số của rơle so lệch 7SS601, chọn cách đấu nối số vòng dây CT phụ. Điều này giúp cho cán bộ thí nghiệm, cán bộ điều độ và cán bộ thiết kế tiếp cận rơle kỹ thuật số bảo vệ thanh góp dễ dàng và đảm bảo tin cậy. TÀI LIỆU THAM KHẢO [1] PGS.TS Lê Kim Hùng, Bảo vệ các ph ần tử chính trong hệ thống điện, NXB Đà Nẵng, 2004. 33
  7. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, ĐẠI HỌC ĐÀ NẴNG - SỐ 4(33).2009 [2] VS.GS Trần Đình Long, Bảo vệ các Hệ thống điện, NXB Khoa học và kỹ thuật Hà Nội, 2000. [3] SIEMENS, Application For Siprotec Protection Relays, 2005. [4] SIEMENS, 7SS600 Different Protection Relays, 2002. 34