Bài giảng môn học Kinh tế lượng - Hoàng Thị Hồng Văn
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng môn học Kinh tế lượng - Hoàng Thị Hồng Văn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_giang_mon_hoc_kinh_te_luong_hoang_thi_hong_van.pdf
Nội dung text: Bài giảng môn học Kinh tế lượng - Hoàng Thị Hồng Văn
- KINH TẾ ĐẠI LƯỢNG
- Tập bài giảng mơn học: Kinh tế lượng Chương I NHẬP MƠN KINH TẾ LƯỢNG 1.1 KINH TẾ LƯỢNG LÀ GÌ? Diễn giải theo nghĩa đơn giản, kinh tế lượng (ECONOMETRICS) liên quan đến việc áp dụng các phương pháp thống kê trong kinh tế học. Tuy nhiên, trong thống kê kinh tế, các dữ liệu thống kê là chính yếu cịn kinh tế lượng được là sự hợp nhất của lý thuyết kinh tế, cơng cụ tốn học và các phương pháp luận thống kê. Mở rộng hơn, kinh tế lượng quan tâm đến : (1) Ước lượng các mối quan hệ kinh tế, (2) Đối chiếu lý thuyết kinh tế với thực tế và kiểm định các giả thuyết liên quan đến hành vi kinh tế, (3) Dự báo các hành vi của các biến số kinh tế. Sau đây là những ví dụ thực tế minh họa mỗi hoạt động này của kinh tế lượng : 1.1.1 Ước lượng các mối quan hệ kinh tế Kinh tế học thực nghiệm cung cấp rất nhiều ví dụ nhằm ước lượng các mối quan hệ kinh tế từ dữ liệu. Sau đây là một số các ví dụ : - Các nhà phân tích và các cơng ty thường quan tâm ước lượng cung/cầu của các sản phẩm, dịch vụ. - Một cơng ty thường quan tâm đến việc ước lượng ảnh hưởng của các mức độ quảng cáo khác nhau đến doanh thu và lợi nhuận. - Các nhà phân tích thị trường chứng khốn tìm cách liên hệ giá của cổ phiếu với các đặc trưng của cơng ty phát hành cổ phiếu đĩ, cũng như với tình hình chung của nền kinh tế. - Nhà nước muốn đánh giá tác động của các chính sách tiền tệ tài chính đến các biến quan trọng như thất nghiệp, thu nhập, xuất nhập khẩu, lãi suất, tỷ lệ lạm phát, và thâm hụt ngân sách 1.1.2 Kiểm định giả thuyết Một điểm tốt của kinh tế lượng là quan tâm đến việc kiểm định giả thuyết về các hành vi kinh tế. Ví dụ minh họa : - Các nhà phân tích thường quan tâm xem nhu cầu cĩ co giãn theo giá và thu nhập hay khơng ? Biên soạn : ThS. Hồng Thị Hồng Vân 1
- Tập bài giảng mơn học: Kinh tế lượng - Các cơng ty cũng muốn xác định xem chiến dịch quảng cáo của mình cĩ thực sự tác động làm tăng doanh thu hay khơng ? - Cơng ty muốn biết lợi nhuận tăng hay giảm theo qui mơ hoạt động ? - Các cơng ty kinh doanh thuốc lá và các nhà nghiên cứu y khoa đều quan tâm đến các báo cáo phẫu thuật tổng quát về hút thuốc và ung thư phổi (và các bệnh về hơ hấp khác) cĩ dẫn đến việc giảm tiêu thụ thuốc lá đáng kể hay khơng ? - Các nhà kinh tế vĩ mơ muốn đánh giá hiệu quả của các chính sách nhà nước. 1.1.3 Dự báo Khi các biến số được xác định và chúng ta đánh giá được tác động cụ thể của chúng đến chủ thể nghiên cứu, chúng ta cĩ thể muốn sử dụng các mối quan hệ ước lượng để dự đốn các giá trị trong tương lai. Ví dụ minh hoạ : - Các cơng ty dự báo doanh thu, lợi nhuận, chi phí sản xuất cần thiết. - Chính phủ dự đốn nhu cầu về năng lượng để cĩ chiến lược đầu tư xây dựng hoặc các thỏa thuận mua năng lượng từ bên ngồi cần được ký kết. - Các cơng ty dự báo các chỉ số thị trường chứng khốn và giá cổ phiếu. - Chính phủ dự đốn những con số như thu nhập, chi tiêu, lạm phát, thất nghiệp, và thâm hụt ngân sách và thương mại. - Các địa phương dự báo định kỳ mức tăng trưởng của địa phương qua các mặt: dân số; việc làm; số nhà ở, tịa nhà thương mại và các xưởng cơng nghiệp; nhu cầu về trường học, đường xá, trạm cảnh sát, trạm cứu hỏa, và dịch vụ cơng cộng; v.v Do ba bước tổng quát được xác định trong phần mở đầu của chương này thường căn cứ vào dữ liệu mẫu hơn là dựa vào dữ liệu điều tra của tổng thể, vì vậy trong những cuộc điều tra chuẩn này sẽ cĩ yếu tố bất định: - Các mối quan hệ ước lượng khơng chính xác. - Các kết luận từ kiểm định giả thuyết hoặc là phạm vào sai lầm do chấp nhận một giả thuyết sai hoặc sai lầm do bác bỏ một giả thuyết đúng. - Các dự báo dựa vào các mối liên hệ ước lượng thường khơng chính xác. Để giảm mức độ bất định, một nhà kinh tế lượng sẽ luơn luơn ước lượng nhiều mối quan hệ khác nhau giữa các biến nghiên cứu. Sau đĩ, họ sẽ thực hiện một loạt các kiểm tra để xác định mối quan hệ nào mơ tả hoặc dự đốn gần đúng nhất hành vi của biến số quan tâm. Tính bất định này khiến cho phương pháp thống kê trở nên rất quan trọng trong mơn kinh tế lượng. Biên soạn : ThS. Hồng Thị Hồng Vân 2
- Tập bài giảng mơn học: Kinh tế lượng 1.2 PHƯƠNG PHÁP THỰC HIỆN MỘT NGHIÊN CỨU KINH TẾ LƯỢNG Để thực hiện một nghiên cứu thực nghiệm, một nhà nghiên cứu phải cĩ những câu trả lời thỏa đáng cho các câu hỏi sau: (1) Mơ hình cĩ ý nghĩa kinh tế khơng? Cụ thể, mơ hình cĩ thể hiện mọi quan hệ tương thích ẩn trong quá trình phát dữ liệu hay khơng? (2) Dữ liệu cĩ tin cậy khơng? (3) Phương pháp ước lượng sử dụng cĩ phù hợp khơng? Cĩ sai lệch trong các ước lượng tìm được khơng? (4) Các kết quả của mơ hình so với các kết quả từ những mơ hình khác như thế nào? (5) Kết quả thể hiện điều gì? Kết quả cĩ như mong đợi dựa trên lý thuyết kinh tế hoặc cảm nhận trực giác khơng? Do dĩ, mặc dù cĩ nhiều quan điểm khác nhau, nhưng nĩi chung đều chia một nghiên cứu kinh tế lượng thành các bước sau: LÝ THUYẾT KINH TẾ, KINH NGHIỆM, NGHIÊN CỨU KHÁC XÁC ĐỊNH VẤN ĐỀ THIẾT LẬP MÔ HÌNH ƯỚC LƯỢNG MÔ HÌNH KIỂM ĐỊNH GIẢ THUYẾT THIẾT LẬP LẠI MÔ HÌNH DIỄN DỊCH KẾT QUẢ CÁC QUYẾT ĐỊNH VỀ DỰ BÁO CHÍNH SÁCH Hình 1.1 : Các bước thực hiện một nghiên cứu kinh tế lượng Biên soạn : ThS. Hồng Thị Hồng Vân 3
- Tập bài giảng mơn học: Kinh tế lượng 1.2.1 Xác định vấn đề nghiên cứu: Vấn đề nghiên cứu thường được xác định bởi yêu cầu của cơng việc và/hoặc do cấp trên của nhà nghiên cứu chỉ định. Ví dụ, một trong những nhiệm vụ chính của nhà phân tích trong bộ phận dự báo của ngành điện lực là ước lượng liên hệ giữa nhu cầu về điện và các yếu tố ảnh hưởng như thời tiết và tiêu thụ theo mùa, giá điện, thu nhập, loại máy mĩc gia dụng, đặc điểm địa lý, cơng nghiệp của nơi phục vụ v.v. Mối liên hệ ước lượng sau đĩ sẽ được dùng để tính các giá trị dự báo lượng điện. Các giá trị dự báo này được ngành điện lực khu vực xem xét để quyết định cấu trúc giá mới như thế nào và cĩ cần phải xây dựng thêm nhà máy năng lượng mới để đáp ứng nhu cầu người dân trong khu vực hay khơng. Trong ví dụ này, dễ dàng nêu ra vấn đề nghiên cứu là liên hệ giữa nhu cầu điện với các yếu tố ảnh hưởng đến nhu cầu này, và phát ra các dự báo. 1.2.2 Thiết lập mơ hình Mọi phân tích hệ thống kinh tế, xã hội, chính trị hoặc vật lý dựa trên một cấu trúc logic (gọi là mơ hình), cấu trúc này mơ tả hành vi của các phần tử trong hệ thống và là khung phân tích chính. Trong kinh tế học, cũng như trong các ngành khoa học khác, mơ hình này được thiết lập dưới dạng phương trình, trong trường hợp này, các phương trình này mơ tả hành vi kinh tế và các biến liên quan. Một mơ hình được nhà nghiên cứu thiết lập cĩ thể là một phương trình hoặc là hệ gồm nhiều phương trình. Dựa trên lý thuyết kinh tế, kinh nghiệm, các nghiên cứu khác, nhà nghiên cứu sẽ đưa ra mơ hình lý thuyết đề nghị. Chẳng hạn, một nhà kinh tế cĩ thể xác định một hàm tiêu dùng cĩ dạng như sau: Yt= β1 + β2Xt + ut (quan hệ khơng xác định, cĩ tính ngẫu nhiên) Trong đĩ: Yt: Tiêu dùng ($billion) Xt: GDP ($billion) ut : là sai số, một biến ngẫu nhiên (stochastic) 1.2.3 Thu thập dữ liệu Để ước lượng mơ hình kinh tế lượng mà một nhà nghiên cứu đưa ra, cần cĩ mẫu dữ liệu về các biến phụ thuộc và biến độc lập. 1.2.4 Ước lượng mơ hình kinh tế lượng. Sau khi mơ hình đã được thiết lập và dữ liệu phù hợp đã được thu thập, nhiệm vụ chủ yếu của nhà điều tra là ước lượng những thơng số chưa biết của mơ hình. Trong ví dụ trên ta sẽ các ước lượng của số hạng tung độ gốc β1, số hạng độ dốc β2, và các thơng số (như trung bình và phương sai) của phân bố xác suất của sai số ut. Biên soạn : ThS. Hồng Thị Hồng Vân 4
- Tập bài giảng mơn học: Kinh tế lượng 1.2.5 Kiểm định giả thuyết Sau khi ước lượng mơ hình, nhà nghiên cứu cần kiểm định các giả thuyết hoặc dự báo các giá trị của biến phụ thuộc, với những giá trị của các biến độc lập cho trước. Việc kiểm định chẩn đốn mơ hình nhiều lần nhằm chắc chắn là những giả định đặt ra và các phương pháp ước lượng được sử dụng phù hợp với dữ liệu đã thu thập. Mục tiêu của kiểm định là tìm được những kết luận thuyết phục nhất, đĩ là những kết luận khơng thay đổi nhiều đối với các đặc trưng của mơ hình. Kiểm định giả thuyết khơng chỉ được thực hiện nhằm cải tiến các đặc trưng của mơ hình mà cịn nhằm kiểm định tính đúng đắn của các lý thuyết. 1.2.6 Diễn dịch kết quả Bước cuối cùng của một nghiên cứu là diễn dịch các kết quả: ra quyết định về chính sách hay dự báo. 1.3 DỮ LIỆU TRONG CÁC MƠ HÌNH KINH TẾ LƯỢNG Cĩ ba dạng dữ liệu kinh tế cơ bản: dữ liệu chéo (cross-sectional data), dữ liệu chuỗi thời gian (time series data), và dữ liệu dạng bảng (panel data). - Dữ liệu chéo (cross-sectional data): bao gồm các quan sát cho nhiều đơn vị kinh tế tại một thời điểm cho trước. Các đơn vị kinh tế cĩ thể là các cá nhân, các hộ gia đình, các hãng, các tỉnh thành, các quốc gia v.v Ví dụ: Bộ dữ liệu liệu điều tra mức sống dân cư năm 2002 VLSS-2002 - Dữ liệu chuỗi thời gian (time series data): bao gồm các quan sát trên một đơn vị kinh tế cho trước tại nhiều thời điểm. Ví dụ: Ta cĩ thể cĩ các quan sát chuỗi thời gian hàng năm cho chỉ tiêu GDP của một quốc gia từ năm 1960 đến 2005. - Dữ liệu dạng bảng (panel data): là sự kết hợp giữa các quan sát của các đơn vị kinh tế về một chỉ tiêu nào đĩ theo thời gian. Ví dụ: chúng ta thực hiện điều tra về hộ gia đinh cho cùng những hộ gia đình trong vài năm để đánh giá sự thay đổi của những hộ này theo thời gian. Dữ liệu cĩ thể được thu thập trên các biến "rời rạc" hay "liên tục ". - Biến rời rạc là biến cĩ một tập hợp các kết quả nhất định cĩ thể đếm được. Ví dụ: số thành viên trong một hộ gia đình là một biến rời rạc. - Biến liên tục là biến cĩ một số vơ hạn các kết quả, như là chiều cao của một đứa trẻ. Nhiều biến kinh tế được đo bằng những đơn vị đủ nhỏ để chúng ta coi chúng như là liên tục, mặc dù thực ra chúng là rời rạc. Biên soạn : ThS. Hồng Thị Hồng Vân 5
- Tập bài giảng mơn học: Kinh tế lượng 1.4 CÁC MỐI QUAN HỆ TRONG NGHIÊN CỨU KINH TẾ LƯỢNG: 1.4.1 Phân tích hồi quy và quan hệ hàm số: (1) Phân tích hồi quy là phân tích sự phụ thuộc của biến phụ thuộc vào một hay nhiều biến độc lập. 9 Biến phụ thuộc (hay cịn gọi là biến được giải thích): là đại lượng ngẫu nhiên cĩ phân bố xác suất. 9 Biến độc lập (hay cịn gọi là biến giải thích): là giá trị được xác định trước. Ví dụ: Nghiên cứu sự phụ thuộc chiều cao của con trai vào chiều cao của người cha (Galton Karl Pearson): Biến độc lập là chiều cao của người cha cịn biến phụ thuộc là chiều cao của người con trai, ta khơng thể dự báo một cách chính xác chiều cao của người con trai thơng qua chiều cao của người cha vì sai số và cịn nhiều yếu tố khơng cĩ trong mơ hình. Nĩi cách khác, từ chiều cao của một người cha Xi nào đĩ ta sẽ xác định được chiều cao trung bình của người con trai (giữa chiều cao thực sự của người con trai và chiều cao trung bình này sẽ cĩ một khoảng cách gọi là sai số). (2) Quan hệ hàm số Biến phụ thuộc khơng phải là đại lượng ngẫu nhiên, ứng với một giá trị của biến độc lập ta xác định được duy nhất một biến phụ thuộc: Ví dụ: Cách tính lương cơ bản: Lương cơ bản = Hệ số * Đơn giá tiền lương Ứng với mỗi hệ số và đơn giá tiền lương ta chỉ cĩ mức lương cơ bản chính xác duy nhất. 1.4.2 Hàm hồi quy và quan hệ nhân quả: Phân tích hồi quy nghiên cứu quan hệ một biến phụ thuộc với một hay nhiều biến độc lập, điều này khơng địi hỏi giữa biến độc lập và biến phụ thuộc và biến độc lập phải cĩ mối quan hệ nhân quả. Ví dụ: Nhu cầu tiêu dùng (Sản lượng) = F(giá cả, thu nhập, ) → lý thuyết kinh tế → quan hệ nhân quả. Lượng mưa = F (số con chuồn chuồn, ) Biên soạn : ThS. Hồng Thị Hồng Vân 6
- Tập bài giảng mơn học: Kinh tế lượng 1.4.3 Phân tích hồi quy và phân tích tương quan: Phân tích hồi quy và tương quan khác nhau về mục đích và kỹ thuật. (1) Phân tích tương quan: Mục đích: đo lường mức độ kết hợp tuyến tính giữa 02 biến. Ví dụ: mức độ nghiện thuốc lá và ung thư phổi, điểm thi mơn tốn và thống kê. Kỹ thuật: cĩ tính đối xứng. (2) Phân tích hồi quy: Mục đích: ước lượng hoặc dự báo một (hay nhiều) biến trên cơ sở giá trị đã cho của một (hay nhiều) biến khác. Kỹ thuật: khơng cĩ tính đối xứng. Lưu ý: Để chuẩn bị cho các chương sau, đề nghị sinh viên về ơn tập lại các kiến thức về xáx suất và thống kê. Biên soạn : ThS. Hồng Thị Hồng Vân 7
- Tập bài giảng mơn học: Kinh tế lượng Chương II MƠ HÌNH HỒI QUY ĐƠN BIẾN (Simple Linear Regression Model) 2.1. MƠ HÌNH CƠ BẢN: Mơ hình hồi quy tổng thể (Population Regression Function – PRF) cho biến giá trị trung bình của biến phụ thuộc thay đổi như thế nào khi các biến độc lập nhận các giá trị khác nhau. Nếu PRF cĩ một biến độc lập thì gọi là mơ hình hồi quy tuyến tính đơn biến (gọi tắt là mơ hình hồi quy đơn biến). Lưu ý : Hàm hồi quy tuyến tính được hiểu là tuyến tính theo tham số. Mơ hình hồi quy tổng thể PRF đơn biến cĩ dạng như sau : PRF : Yi = β1 + β2Xi + ui Trong đĩ : Xi, Yi là quan sát thứ i của các biến X và Y X là Biến độc lập, Y là biến phụ thuộc. ui, là sai số của mơ hình. β1, β2 tham số của mơ hình. Dạng xác định của mơ hình E(Yi/Xi)= β1 + β2Xi + ui Đồ thị biểu diễn : Y Yi = β1 + β2Xi + ui Yi ˆ Yi . Xi X Hình 2.1 : Đường biểu diễn mơ hình hồi quy tổng thể Biên soạn : ThS. Hồng Thị Hồng Vân 8
- Tập bài giảng mơn học: Kinh tế lượng 2.1.1. Các quan sát : Ví dụ : Để tìm mối liên hệ giữa giá bán của một ngơi nhà và diện tích sử dụng của nĩ ta sẽ đi thu thập dữ liệu này của từng ngơi nhà. Dữ liệu về giá bán và diện tích sử dụng của một căn nhà nào đĩ ta gọi là một quan sát. Tập hợp tất cả các quan sát cĩ thể cĩ mà ta quan tâm nghiên cứu trong một vấn đề nào đĩ gọi là tổng thể. Số phần tử của tập hợp chính được ký hiệu là N. Mẫu là tập hợp con của tổng thể. Số phần tử của mẫu đã ký hiệu là n (cỡ mẫu). Để tìm được mơ hình PRF ta phải cĩ dữ liệu của tổng thể về các quan sát Xi và Yi. Nhưng trong thực tế điều này rất khĩ khả thi vì khả năng và chi phí. Do đĩ thơng thường ta chỉ cĩ dữ liệu về các biến Xi và Yi của một mẫu lấy ra từ tổng thể nên ta cĩ thể xây dựng được mơ hình hồi quy mẫu (Sample Regression Function – SRF) Mơ hình hồi quy mẫu SRF đơn biến cĩ dạng như sau : ˆ ˆ SRF : Yi = β1 + β2 Xi + uˆ i Trong đĩ : uˆ i là phần dư của mơ hình. ˆ ˆ β1 , β2 là tham số ước lượng của mơ hình. 2.1.2. Các tham số thống kê : Thuật ngữ tuyến tính ở đây được hiểu là tuyến tính theo các tham số ước lượng, nĩ cĩ thể hoặc khơng tuyến tính với các biến. Ta cĩ : PRF : Yi = β1 + β2Xi + ui ∆Y ⇒ E(Yi /Xi) = β1 + β2Xi và β2 = ∆X Ý nghĩa các hệ số hồi quy : β2 : Độ dốc (Slope) của đường hồi quy tổng thể, là lượng thay đổi của Y, ở mức trung bình, trên một đơn vị thay đổi của X. Vì vậy β2 được diễn dịch là ảnh hưởng cận biên của X lên Y. β1 : Tung độ gốc (Intercept) của đường hồi quy tổng thể, và là giá trị của trị trung bình Y khi X bằng 0. Tuy nhiên sẽ khơng cĩ cách giải thích cho β1 vì nguyên nhân là vì β1 cịn ẩn chứa biến bỏ sĩt (ngồi mơ hình). ˆ ˆ Tương tự cho cách giải thích β1 , β2 của hàm hồi quy mẫu SRF. ˆ ˆ SRF : Yi = β1 + β2 Xi + uˆ i ˆ β2 : Độ dốc của đường SRF, là lượng thay đổi của Y, ở mức trung bình theo thơng tin của mẫu, trên một đơn vị thay đổi của X. ˆ β1 : Tung độ gốc của đường SRF. Biên soạn : ThS. Hồng Thị Hồng Vân 9
- Tập bài giảng mơn học: Kinh tế lượng Ví dụ : Tìm mối liên hệ giữa giá của một ngơi nhà (PRCIE – đơn vị tính : ngàn USD) và diện tích sử dụng (SQFT – đơn vị tính : m2), ta thiết lập một mơ hình hồi quy đơn giản sau : PRF : PRICEi = β1 + β2SQFTi + ui ˆ ˆ SRF : PRICEi = β1 + β2 SQFTi + uˆ i SRF : PRICEi = 52,35 + 0,139*SQFTi + uˆ i Cách giải thích các thơng số ước lượng của mơ hình : ˆ β2 = 0,139, điều đĩ cĩ nghĩa là : theo thơng tin của mẫu, một mét vuơng diện tích tăng thêm sẽ làm tăng giá bán nhà lên, ở mức trung bình, 0.139 ngàn USD hay 139 USD. Một cách thực tế hơn, khi diện tích sử dụng nhà tăng thêm 100 mét vuơng thì hy vọng rằng giá bán trung bình của ngơi nhà sẽ tăng thêm khoảng $14.000 USD. ˆ ˆ β1 = 52,35, khơng cĩ cách giải thích cho β1 vì khơng thể cho rằng khi khơng ngơi nhà đất thì người mua vẫn phải trả 01 khoản tiền là 52,35 ngàn $. Nguyên nhân là vì ˆ β1 cịn ẩn chứa biến bỏ sĩt. 2.1.3. Số hạng sai số : Yi (Xi, Yi) uˆ i ui ˆ ˆ ˆ Y i = β 1 + β 2 X i Đường hồi quy mẫu (Đường hồi quy tổng thể) E(Y /X ) =β +β X ˆ i i 1 2 i Yi E(Yi/Xi) 0Xi Hình 2.2 : Mơ hình hồi quy mẫu và tổng thể Số hạng sai số ui (hay cịn gọi là số hạng ngẫu nhiên - stochastic disturbance) là thành phần ngẫu nhiên khơng quan sát được và là sai biệt giữa Yi và phần xác định β1 + β2Xi ˆ ˆ ui = Yi - Yi ( Yi : giá trị ước lượng (dự báo) của Yi) Trong PRF : ui = Yi – E(Yi/Xi) được gọi là sai số (Error), : ˆ cịn trong SRF uˆ i = Yi - Yi được gọi là phần dư (Residual), Biên soạn : ThS. Hồng Thị Hồng Vân 10
- Tập bài giảng mơn học: Kinh tế lượng Nguyên nhân gây ra sai số : - Biến giải thích bị bỏ sĩt. Giả sử mơ hình thực sự là Yi = β1 + β2Xi + β3Zi + νi, trong đĩ Zi là một biến giải thích khác và νi là số hạng sai số thực sự, nhưng ta lại sử dụng mơ hình là Yi = β1 + β2Xi + ui. Vì thế, ui = β3Zi + νi bao hàm cả ảnh hưởng của biến Z bị bỏ sĩt. Trong ví dụ trên, nếu mơ hình thực sự bao gồm cả ảnh hưởng của số phịng ngủ và phịng tắm của ngơi nhà lên giá bán và ta đã bỏ qua hai ảnh hưởng này mà chỉ xét đến diện tích sử dụng thì số hạng u sẽ bao hàm cả ảnh hưởng của phịng ngủ và phịng tắm lên giá bán - Tính phi tuyến tính : ui cĩ thể bao gồm ảnh hưởng phi tuyến tính trong mối quan 2 hệ giữa Y và X. Vì thế, nếu mơ hình thực sự là Yi = β1 + β2Xi + β3 X i + νi, nhưng 2 ta lại sử dụng mơ hình là Yi = β1 + β2Xi + ui. Vì thế, ui = β3 X i + νi bao hàm cả ảnh hưởng của thành phần phi tuyến - Sai số đo lường : Sai số trong việc đo lường X và Y cĩ thể được thể hiện qua u. Sai số này là do : sử dụng các biến thay thế X, Y, cách lấy mẫu, - Những ảnh hưởng khơng thể dự báo : Dù là một mơ hình kinh tế lượng tốt cũng cĩ thể chịu những ảnh hưởng ngẫu nhiên khơng thể dự báo được. Những ảnh hưởng này sẽ luơn được thể hiện qua số hạng sai số ui. 2.2. ƯỚC LƯỢNG MƠ HÌNH BẰNG PHƯƠNG PHÁP BÌNH PHƯƠNG TỐI THIỂU THƠNG THƯỜNG (Ordinary Least Of Squares) Nguyên tắc : Tiêu chuẩn tối ưu được sử dụng bởi phương pháp bình phương tối thiểu thơng thường (OLS) là cực tiểu hĩa hàm mục tiêu : n ˆ 2 ˆ 2 ESS = ∑ u i → Min (viết tắt ∑ u i ). i=1 (ESS = Error Sum of Squares : Tổng bình phương sai số) ˆ ˆ ˆ Ta cĩ : Yi = β1 + β2 Xi + uˆ i ⇒ uˆ i = Yi - Yi ˆ 2 ˆ 2 ˆ ˆ 2 Vậy : ESS = ∑ u i = ∑(Yi − Yi ) = ∑(Yi − β1 − β2 X i ) → Min ˆ ˆ ˆ ˆ Để tínhβ1 vàβ2 ta lấy đạo hàm bậc nhất theoβ1 vàβ2 và được hệ phương trình chuẩn ⎧∂ESS = 0 ⎪ ˆ ⎧− 2 (Y − βˆ − βˆ X ) = 0 ⎧ uˆ = 0 ⎪ ∂β1 ⎪ ∑ i 1 2 i ⎪∑ i ⎨ ⇒ ⎨ ⇒ ⎨ ∂ESS ˆ ˆ ⎪ uˆ X = 0 ⎪ = 0 ⎩⎪− 2∑(Yi − β1 − β2 X i )Xi = 0 ⎩∑ i i ⎪ ˆ ⎩ ∂β 2 Biên soạn : ThS. Hồng Thị Hồng Vân 11
- Tập bài giảng mơn học: Kinh tế lượng Từ hệ phương trình chuẩn ta suy ra: ˆ ˆ β1 = Y − β2 X n X Y − X Y (X − X)(Y − Y) βˆ = ∑∑∑i i i i = ∑ i i 2 n X 2 − ( X ) 2 2 ∑∑i i ∑(X i − X) ⎧x = X − X x y ⎪ i i ˆ ∑ i i Nếu đặt : ⎨ ⇒ β2 = x 2 ⎩⎪yi = Yi − Y ∑ i Ví dụ : Với dữ liệu về giá và diện tích của 14 căn (trong DATA3-1 – Bộ dữ liệu ˆ ˆ Ramanathan). Tìm β1 , β2 trong mơ hình hồi quy ước lượng sau : PRF : PRICEi = β1 + β2SQFTi + ui ˆ ˆ SRF : PRICEi = β1 + β2 SQFTi + uˆ i Trong đĩ: PRICEi : Giá mỗi căn nhà (ngàn USD) 2 SQFTi : diện tích căn nhà (m ) Từ dữ liệu ta tính được Y = 317,49 X = 1.910,93 Bảng 2.1 : Thực hiện hồi quy đơn biến Yi = Xi = 2 i Yi - Y Xi - X (Xi- X )(Yi- Y ) (Xi- X ) PRICEi SQFTi 1 199,9 1065 -117,59 -845,93 99.475,16 715.595,15 2 228 1254 -89,49 -656,93 58.790,41 431.555,15 3 235 1300 -82,49 -610,93 50.397,24 373.233,72 4 285 1577 -32,49 -333,93 10.850,29 111.508,29 5 239 1600 -78,49 -310,93 24.405,67 96.676,58 6 293 1750 -24,49 -160,93 3.941,60 25.898,01 7 285 1800 -32,49 -110,93 3.604,39 12.305,15 8 365 1870 47,51 -40,93 -1.944,40 1.675,15 9 295 1935 -22,49 24,07 -541,44 579,43 10 290 1948 -27,49 37,07 -1.019,20 1.374,29 11 385 2254 67,51 343,07 23.159,77 117.698,01 12 505 2600 187,51 689,07 129.205,81 474.819,43 13 425 2800 107,51 889,07 95.581,53 790.448,01 14 415 3000 97,51 1.089,07 106.192,24 1.186.076,58 Tổng cộng 602.099,09 4.339.442,93 (X − X)(Y − Y) 602.099.09 Ta cĩ : βˆ = ∑ i i = = 0,1388 2 2 4.339.442,93 ∑(X i − X) ˆ ˆ β1 = Y − β2 X = 317,49 − 0,1388×1.910,93 = 52,351 Vậy : PRICEi = 52,35 + 0,139*SQFTi + uˆ i Biên soạn : ThS. Hồng Thị Hồng Vân 12
- Tập bài giảng mơn học: Kinh tế lượng Lưu ý: Tính bằng hàm sẵn cĩ của EXCEL : ˆ β2 = SLOPE(known_y's,known_x's) ˆ β1 = INTERCEPT(known_y's,known_x's) Tính bằng Data Analysis của EXCEL: Regression Statistics Multiple R 0.905827 R Square 0.820522 Adjusted R Square 0.805565 Standard Error 39.023036 Observations 14 ANOVA df SS MS F Significance F Regression 1 83541.44 83541.44 54.8605128 8.19906E-06 Residual 12 18273.57 1522.797 Total 13 101815 Standard Coefficients t Stat P-value Lower 95% Upper 95% Error Intercept 52.350907 37.2855 1.404056 0.185651 -28.887191 133.5890 SQFT 0.138750 0.018733 7.406788 0.000008 0.097935 0.179566 Hình 2.3 Thực hiện hồi quy đơn biến trên EXCEL Tính bằng phần mềm EVIEW : Dependent Variable: PRICE Method: Least Squares Date: 01/04/06 Time: 12:08 Sample: 1 14 Included observations: 14 Variable Coefficient Std. Error t-Statistic Prob. C 52.35091 37.28549 1.404056 0.1857 SQFT 0.138750 0.018733 7.406788 0.0000 R-squared 0.820522 Mean dependent var 317.4929 Adjusted R-squared 0.805565 S.D. dependent var 88.49816 S.E. of regression 39.02304 Akaike info criterion 10.29774 Sum squared resid 18273.57 Schwarz criterion 10.38904 Log likelihood -70.08421 F-statistic 54.86051 Durbin-Watson stat 1.975057 Prob(F-statistic) 0.000008 Hình 2.4 Thực hiện hồi quy đơn biến trên EVIEW Lưu ý: Khi cĩ các kết quả tính tốn của mơ hình từ các phần mềm, sinh viên cần viết ra PRF và SRF. Biên soạn : ThS. Hồng Thị Hồng Vân 13
- Tập bài giảng mơn học: Kinh tế lượng 2.3. CÁC GIẢ THIẾT CƠ BẢN : (1) Mơ hình hồi quy tuyến tính với các tham số β1 và β2. (2) Tất cả các giá trị quan sát Xi khơng được giống nhau; phải cĩ ít nhất một giá trị khác biệt, nghĩa là Var(Xi) ≠ 0 (3) Sai số ui là biến ngẫu nhiên với trung bình bằng khơng, nghĩa là E(ui) = 0. (4) Các giá trị quan sát Xi được cho và khơng ngẫu nhiên, điều này ngầm định rằng khơng tương quan với ui nghĩa là Cov (Xi, ui) = 0. 2 (5) Sai số ui cĩ phương sai khơng đổi với mọi i; nghĩa là Var(ui) = σ = const. (6) Hai sai số ui và us bất kỳ độc lập với nhau đối ∀ i ≠ s, nghĩa là Cov(ui,us)=0 (7) Số quan sát (cỡ mẫu) phải lớn hơn số hệ số hồi quy ước lượng (ở đây n > 2). 2 (8) Sai số ui tuân theo phân phối chuẩn ui ~ N(0, σ ) 2.4. TÍNH CHẤT : Tính chất 1: 2 X 2 2 2 (∑ i ) 2 SXX = (X − X) = X − = X − nX ∑ i ∑ i n ∑ i Tính chất 2: ∑ X i ∑ Yi SXY = (X − X)(Y − Y) = X Y − = X Y − nXY ∑ i i ∑ i i n ∑ i i x y S ˆ ∑ i i xy Từ tính chất (1) và (2) ta suy ra β2 = 2 = ∑ x i Sxx Tính chất 3: ˆ ˆ Khơng thiên lệch : E(β1 ) = β1 và E(β2 ) = β2 (Do giả thiết 3 và 4) Tính chất 4: Tính nhất quán: limβˆ = β (Do giả thiết 2, 3 và 4) n→∞ Tính chất 5 (Định lý Gauss–Markov) Ước lượng OLS là BLUE (Best Linear Unbias Estimation) nếu thỏa mãn giả thiết 2, 3, 4, 5 và 6. Nghĩa là trong tất cả các tổ hợp tuyến tính khơng thiên lệch của Y, ước lượng OLS của tham số ước lượng cĩ phương sai bé nhất. Biên soạn : ThS. Hồng Thị Hồng Vân 14
- Tập bài giảng mơn học: Kinh tế lượng 2.5. ĐỘ CHÍNH XÁC CỦA ƯỚC LƯỢNG Từ lý thuyết xác suất ta biết rằng phương sai của một biến ngẫu nhiên đo lường sự phân tán xung quanh giá trị trung bình. Phương sai càng bé, ở mức trung bình, từng giá trị riêng biệt càng gần với giá trị trung bình. Tương tự, khi đề cập đến khoảng tin cậy, ta biết rằng phương sai của biến ngẫu nhiên càng nhỏ, khoảng tin cậy của các tham số càng bé. Như vậy, phương sai của một ước lượng là thơng số để chỉ độ chính xác của một ước ˆ ˆ lượng. Do đĩ việc tính tốn phương sai của β1 và β2 là luơn cần thiết. Từ các tính chất và giả thiết ta cĩ các cơng thức tính tốn sau : Phương sai của sai số : u 2 Var( uˆ ) = σ2 = ∑ i i n − 2 u 2 ⇒ σ = ∑ i n − 2 Phương sai của hệ số độ dốc : 2 ˆ 2 ˆ σ Var(β2 ) = S ˆ = E(β2 -β2) = β2 SXX 2 ˆ σ ⇒ SE(β2 ) =S ˆ = SE: Standard Error (sai số chuẩn). β2 SXX Phương sai của hệ số tung độ gốc : X 2 2 ˆ 2 ˆ ∑ i σ Var(β1 ) = S ˆ = E(β1 -β1) = × β1 n SXX X 2 2 ˆ ∑ i σ ⇒ SE(β1 ) =S ˆ = = × . β1 n SXX Đồng phương sai của hệ sốđộ dốc và tung độ gốc : 2 ˆ ˆ Xσ Cov(β1 β2 ) = S ˆ ˆ = β1β2 SXX 2.6. ĐỘ THÍCH HỢP CỦA MƠ HÌNH: Hình 2.2 cho thấy rõ rằng khơng cĩ đường thẳng nào hồn tồn “thích hợp” với các dữ liệu bởi vì cĩ nhiều giá trị dự báo bởi đường thẳng cách xa với giá trị thực tế. Để cĩ thể đánh giá một mối quan hệ tuyến tính mơ tả những giá trị quan sát cĩ tốt hơn một mối quan hệ tuyến tính khác hay khơng, cần phải cĩ các chỉ tiêu tốn học đo lường độ thích hợp. Hệ số xác định R2 là một chỉ tiêu được đề nghị. Biên soạn : ThS. Hồng Thị Hồng Vân 15
- Tập bài giảng mơn học: Kinh tế lượng Tổng bình phương tồn phần (Total Sum of Squares – TSS) 2 TSS = ∑(Yi − Y) Tổng bình phương sai số (Error Sum of Squares – ESS) ˆ 2 ESS = ∑(Yi − Yi ) Tổng bình phương hồi quy (Regression Sum of Squares – RSS) ˆ 2 RSS = ∑(Yi − Y) Người ta đã chứng minh được : TSS = ESS + RSS Hệ số xác định: 2 RSS ESS ˆ SXX R = = 1− = β2 TSS TSS SYY Vậy : - 1 ≤ R2 ≤ 1 Ý nghĩa của R2: % sự thay đổi của biến phụ thuộc được giải thích bởi mơ hình. Trong mơ hình hồi quy đơn biến: R2 = r2 (r là hệ số tương quan mẫu) 2.7. KHOẢNG TIN CẬY VÀ KIỂM ĐỊNH CÁC GIẢ THUYẾT THỐNG KÊ: Kiểm định giả thuyết thống kê là một trong những nhiệm vụ chính của nhà kinh tế ˆ ˆ lượng. Như ta vừa tính tốn trong ví dụ trên, thơng số ước lượng β1 và β2 là một đại lượng khác khơng nhưng thơng số hồi quy của tổng thể β1 và β2 liệu cĩ khác 0 hay khơng, điều này cĩ ý nghĩa gì. Kiểm định các giả thuyết thống kê sẽ giúp ta trả lời được câu hỏi này. 2.7.1. Đối với tham số độ dốc: Trong nghiên cứu kinh tế lượng, người ta hay dùng kiểm định 02 phía đối với kiểm định các tham số riêng lẻ. Kết quả kiểm định này trên các phần mềm chuyên dụng là kiểm định 02 phía. Giả thuyết kiểm định: H0: β2 = 0 → X khơng ảnh hưởng đối với Y. H1: β2 ≠ 0 → X cĩ ảnh hưởng đối với Y. Kỳ vọng: Bác bỏ H0. Xác Định Trị Thống Kê Kiểm Định ˆ β2 tc = , t* = tα/2, n-2 S ˆ β2 Biên soạn : ThS. Hồng Thị Hồng Vân 16
- Tập bài giảng mơn học: Kinh tế lượng Kết luận: Nếu | tc | > tα/2, n-2 → Bác bỏ H0 Lưu ý : Trong các phần mềm ứng dụng giá trị p-value (hay Significant) là giá trị xác suất tương ứng với tc với bậc tự do n-2 thường được tính tốn sẵn, ta cĩ thể dùng giá trị này để kết luận nhanh. Nếu p-value ≤ α → Bác bỏ H0 Khoảng tin cậy của β2 : ˆ ˆ β2 − S ˆ * t α / 2,n−2 ≤ β2 ≤β2 + S ˆ * t α / 2,n−2 β2 β2 ˆ ˆ Đặt a = β2 − S ˆ * t α / 2,n−2 ; b = β2 + S ˆ * t α / 2,n−2 ⇒ a ≤ β2 ≤ b β2 β2 Nếu a, b cùng dấu → Bác bỏ H0 Ví dụ: Quay lại với ví dụ PRF : PRICEi = β1 + β2SQFTi + ui ˆ ˆ SRF : PRICEi = β1 + β2 SQFTi + uˆ i SRF : PRICEi = 52,35 + 0,139*SQFTi + uˆ i Giả thuyết kiểm định với α = 5%: H0: β2 = 0 → Diện tích sử dụng khơng ảnh hưởng đến giá nhà. H1: β2 ≠ 0 → Diện tích sử dụng ảnh hưởng đến giá nhà. Theo kết quả hình 2.3 (hoặc 2.4) ta cĩ 3 cách để đưa ra kết luận: • tc = 7,406788 < tα/2, n-2 = t2,5%,12→ Bác bỏ H0. • hay p-value = 0,000 < α → Bác bỏ H0. • 0,979 < β2 < 0,1796 → Bác bỏ H0. Vậy : Diện tích sử dụng ảnh hưởng đến giá nhà cĩ ý nghĩa về mặt thống kê. Lưu ý: Chỉ sử dụng 01 trong 03 cách trong thực hành. Biên soạn : ThS. Hồng Thị Hồng Vân 17
- Tập bài giảng mơn học: Kinh tế lượng Kiểm định 01 phía: Nếu biết dấu kỳ vọng của β2 ta cĩ thể thực hiện kiểm định 01 phía với các giả thiết : H0: β2 = 0 (β2 ≥ 0) hoặc H0: β2 = 0 (β2 ≤ 0) H1: β2 0 Khi đĩ miền bác bỏ là : tc tα, n-2 2.7.2. Đối với tham số tung độ gốc. Trình bày tương tự cho kiểm định các giả thiết thống kê và tính khoảng tin cậy của β1. Tuy nhiên thơng thường ta khơng quan tâm đến việc kiểm định các giả thiết thống kê cho tham số tung độ gốc β1 nguyên nhân là do khơng cĩ cách giải thích phù hợp cho tham số này. Kiểm định độ thích hợp của mơ hình sẽ được trình bày trong chương Hồi quy đa biến. 2.8. TRÌNH BÀY KẾT QUẢ HỒI QUY Các kết quả của phân tích hồi quy được trình bày theo nhiều cách. Theo cách thơng thường, người ta sẽ viết phương trình ước lượng kèm với các trị thống kê t ở dưới mỗi hệ số hồi quy như sau: PRICE = 52,315 + 0,139SQFT + uˆ i (1,404) (7,41) R2 = 0,821 df = 12 σ = 39,023 Bậc tự do (df: Degree Free). Một cách khác là điền các sai số chuẩn dưới các hệ số hồi quy. Tuy nhiên, ngày nay với các tiện ích của các phần mềm máy tính người ta cĩ thể trình bày kết quả hồi quy bằng in các bảng tính từ các Biên soạn : ThS. Hồng Thị Hồng Vân 18
- Tập bài giảng mơn học: Kinh tế lượng 2.9. THANG ĐO: Giả sử chúng ta đã tính PRICE theo đơn vị đồng đơla thay vì theo ngàn đồng đơla. Cột PRICE ở bảng tính sẽ chứa các giá trị như 199.900, 228.000, v.v. Những ước lượng của hệ số hồi quy, các sai số chuẩn của chúng, R2, sẽ bị ảnh hưởng như thế nào bởi sự thay đổi đơn vị này? Ta cĩ : (1) PRICEi = β1 + β2SQFTi + ui (trong đĩ PRICEi tính bằng ngàn USD) * * (2) PRICEi = α1 + α2SQFTi + νi (trong đĩ PRICEi tính bằng USD) * ⇒ PRICEi = 1000 × PRICEi thay vào (2) ta được : 1000 × PRICEi = α1 + α2SQFTi + νi α1 α 2 νi ⇒ PRICEi = + SQFTi + 1000 1000 1000 α1 α 2 ν i Vậy: β1 = ; β2 = ui = 1000 1000 1000 Hay: α1 = 1000β1 ; α2 = 1000β2 ; νi = 1000ui Kết luận : Việc thay đổi đơn vị là cho các hệ số ước lượng và các sai số chuẩn của chúng tăng 1000 lần, cịn R2 khơng thay đổi. Làm tương tự với sự thay đổi đơn vị của các biến khác. Biên soạn : ThS. Hồng Thị Hồng Vân 19
- Tập bài giảng mơn học: Kinh tế lượng Chương III MƠ HÌNH HỒI QUY BỘI (Multiple Linear Regression Model) 3.1. MƠ HÌNH CƠ BẢN: Trong lý thuyết cũng như trong thực tế, cĩ nhiều trường hợp mà biến kinh tế cho trước khơng thể giải thích bằng các mơ hình hồi qui đơn, Ví dụ : (1) Lượng cầu phụ thuộc vào giá, thu nhập, giá các hàng hố khác v.v Nhớ lại lý thyết về hành vi người tiêu dùng. D Q = f(P, I, Ps, Pc,Market size,Pf (giá kỳ vọng), T (thị hiếu)) (2) Sản lượng phụ thuộc vào giá, các nhập lượng ban đầu, các nhập lượng trung gian, cơng nghệ v.v Nhớ lại lý thuyết về hàm sản xuất. QS=f(K,L, TECH) (3) Tốc độ tăng trưởng của nền kinh tế phụ thuộc vào chi tiêu đầu tư, lượng lao động, thay đổi cơng nghệ. Nhớ lại lý thuyết về hàm tổng sản xuất. (4) Lương phụ thuộc vào trình độ giáo dục, kinh nghiệm, giới tính, độ tuổi . . . (5) Giá nhà ở phụ thuộc vào diện tích nhà, số phịng ngủ và số phịng tắm . . . (6) Chi tiêu của hộ gia đình về thực phẩm phụ thuộc vào qui mơ hộ gia đình, thu nhập, vị trí địa lý . . . (7) Tỷ lệ từ vong trẻ em của quốc gia phụ thuộc vào thu nhập bình quân đầu người, trình độ giáo dục . . . (8) Trong Chương 2 ta giới hạn trong trường hợp đơn giản của mơ hình hồi qui đơn biến. Bây giờ, chúng ta sẽ xem xét mơ hình hồi qui tuyến tính đa biến (gọi tắt là mơ hình hồi quy bội), nghĩa là tìm mối liên hệ giữa biến phụ thuộc Y với nhiều biến độc lập X. Mơ hình hồi quy bội tổng thể PRFvà mơ hình hồi quy bội mẫu SRF tổng quát cĩ dạng như sau : PRF : Yi = β1 + β2X2i + β3X3i + β4X4i + + βkXki + ui ˆ ˆ ˆ ˆ ˆ SRF : Yi = β1 + β2 X2i + β3 X3i + β4 X4i + + βk Xki + uˆ i Trong đĩ : Yi là quan sát thứ i của biến Y X2i, X3i, Xki là quan sát thứ i của các biến X2, X3, Xk ui, ( uˆ i ) là sai số (phần dư) của mơ hình. Biên soạn : ThS. Hồng Thị Hồng Vân 20
- Tập bài giảng mơn học: Kinh tế lượng 3.1.1. Ý nghĩa các hệ số: Ta cĩ : E(Yi /Xsi) = β1 + β2X2i + β3X3i + β4X4i + + βkXki ∂Y ⇒ βk = ∂X k βk : Độ dốc riêng phần của đường hồi quy tổng thể đối với biến Xk, nghĩa là khi giữ các biến độc lập khác cố định, khi Xk thay đổi một đơn vị thì ở mức trung bình, Y thay đổi βk đơn vị. Vì vậy β2 được diễn dịch là ảnh hưởng cận biên riêng phần của Xk lên Y. Nĩi cách khác hệ số độ dốc riêng phản ảnh ảnh hưởng rịng (net effect) hoặc ảnh hưởng trực tiếp (direct effect) lên biến phụ thuộc khi biến giải thích thay đổi một đơn vị sau khi đã loại trừ ảnh hưởng của các biến hồi qui khác. β1 : Tung độ gốc của đường hồi quy tổng thể, và là giá trị của trị trung bình Y khi X bằng 0. Tuy nhiên sẽ khơng cĩ cách giải thích cho β1 vì nguyên nhân là vì β1 cịn ẩn chứa biến bỏ sĩt (ngồi mơ hình). Tương tự cho cách giải thích thơng số ước lượng. Ví dụ : Cũng như trước, giá được tính bằng đơn vị ngàn đơ la, nhưng ngồi diện tích sử dụng, giá cịn liên hệ với số phịng ngủ cũng như số phịng tắm nên mơ hình hồi quy bội được xác định như sau: PRF : PRICEi = β1 + β2SQFTi + β3BATHSi + β3BEDRMSi + ui ˆ ˆ ˆ ˆ SRF : PRICEi = β1 + β2 SQFTi + β3 BATHSi + β4 BEDRMSi + uˆ i SRF : PRICEi = 129.062 + 0.1548SQFTi -12.193BATHSi - 21.588BEDRMSi + uˆ i Trong đĩ : PRCIE : Giá nhà (ngàn USD$) SQFT : Diện tích sử dụng (m2) BATHS : Số phịng tắm BEDRMS: Số phịng ngủ. Cách giải thích các thơng số ước lượng của mơ hình : ˆ β2 = 0.1548, điều đĩ cĩ nghĩa là : theo thơng tin của mẫu, khi số phịng tắm và số phịng ngủ được cố định, một mét vuơng diện tích tăng thêm sẽ làm tăng giá bán nhà tăng lên, ở mức trung bình, 0.1548 ngàn USD. ˆ ˆ Tương tư với cách giải thích cho β3 ,β4 . Biên soạn : ThS. Hồng Thị Hồng Vân 21
- Tập bài giảng mơn học: Kinh tế lượng 3.2. ƯỚC LƯỢNG MƠ HÌNH CƠ BẢN BẰNG OLS: Cũng như mơ hình hồi quy tuyến tính đơn, các tham số của mơ hình hồi quy tuyến tính đa biến cũng được ước lượng bằng phương pháp OLS. ˆ 2 ˆ 2 ESS = ∑ u i = ∑(Yi − Yi ) → Min ˆ ˆ ˆ ˆ 2 ∑(Yi − β1 − β2 X 2i − β3X 3i − − βk X ki ) → Min Hệ phương trình chuẩn ⎧∂ESS = 0 ⎪ ˆ ∂β1 ⎧ ˆ ˆ ˆ ˆ ⎪ − 2∑(Yi − β1 − β2 X 2i − β3X 3i − − βk X ki ) = 0 ⎪∂ESS ⎪ = 0 ⎪− 2 (Y − βˆ − βˆ X − βˆ X − − βˆ X )X = 0 ⎪ ˆ ∑ i 1 2 2i 3 3i k ki 2i ⎨ ∂β2 ⇒ ⎨ ⎪ ⎪ ⎪ ⎪ ˆ ˆ ˆ ˆ ⎪∂ESS ⎩− 2∑(Yi − β1 − β2 X 2i − β3X 3i − − βk X ki )X ki = 0 = 0 ⎪ ˆ ⎩ ∂βk Để tìm được các hệ số của SRF ta sẽ giải hệ phương trình chuẩn. Các tham số ước lượng của mơ hình hồi quy 02 biến độc lập: PRF : Yi = β1 + β2X2i + β3X3i + ui ˆ ˆ ˆ SRF : Yi = β1 + β2 X2i + β3 X3i + uˆ i ˆ ˆ ˆ β1 = Y − β2 X 2 − β3 X 3 ( y x ) ( x 2 ) - ( y x ) ( x x ) βˆ = ∑ i 2i ∑ 3i ∑ i 3i ∑ 2i 3i 2 2 2 2 ()()∑ x 2i ∑ x 3i - ()∑ x 2i x 3i ( y x ) ( x 2 ) - ( y x ) ( x x ) βˆ = ∑ i 3i ∑ 2i ∑ i 2i ∑ 2i 3i 3 2 2 2 ()()∑ x 2i ∑ x 3i - ()∑ x 2i x 3i ⎪⎧x ki = X ki − X k Với ⎨ ⎩⎪yi = Yi − Y Việc tính tốn các tham số ước lượng sẽ càng trở nên khĩ khăn nếu mơ hình hồi qui của chúng ta càng cĩ nhiều biến giải thích. Tuy nhiên với sự trợ giúp của phần mềm chuyên dụng như EXCEL, EVIEWS, SPSS, MINITAB chúng ta cĩ thể tìm được giá trị các ước lượng của mơ hình hồi qui bội một cách nhanh chĩng. Biên soạn : ThS. Hồng Thị Hồng Vân 22
- Tập bài giảng mơn học: Kinh tế lượng Ví dụ : Bổ sung dữ liệu về giá và diện tích, số phịng tắm, số phịng ngủ của 14 căn ˆ ˆ ˆ ˆ Tìm β1 , β2 , β3 ,β4 trong mơ hình hồi quy ước lượng sau : PRF : PRICEi = β1 + β2SQFTi + β3BATHSi + β3BEDRMSi + ui ˆ ˆ ˆ ˆ SRF : PRICEi = β1 + β2 SQFTi + β3 BATHSi + β4 BEDRMSi + uˆ i Dùng phần mềm EXCEL ta được: SUMMARY OUTPUT Regression Statistics Multiple R 0.914317 R Square 0.835976 Adjusted R Square 0.786769 Standard Error 40.865717 Observations 14 ANOVA df SS MS F Significance F Regression 3 85114.941 28371.647 16.988940 0.000299 Residual 10 16700.069 1670.007 Total 13 101815.009 Standard Coefficients t Stat P-value Lower 95% Upper 95% Error Intercept 129.0616 88.3033 1.4616 0.1746 -67.6903 325.8136 SQFT 0.15480.03194.84650.00070.08360.2260 BATHS -12.1928 43.2500 -0.2819 0.7838 -108.5598 84.1743 BEDRMS -21.5875 27.0293 -0.7987 0.4430 -81.8126 38.6376 Hình 3.1: Hồi quy đa biến trên EXCEL Dùng phần mềm EVIEWS ta được: Dependent Variable: PRICE Method: Least Squares Date: 05/29/05 Time: 17:50 Sample: 1 14 Included observations: 14 Variable Coefficient Std. Error t-Statistic Prob. C 129.0616 88.30326 1.461573 0.1746 SQFT 0.154800 0.031940 4.846516 0.0007 BATHS -12.19276 43.25000 -0.281913 0.7838 BEDRMS -21.58752 27.02933 -0.798670 0.4430 R-squared 0.835976 Mean dependent var 317.4929 Adjusted R-squared 0.786769 S.D. dependent var 88.49816 S.E. of regression 40.86572 Akaike info criterion 10.49342 Sum squared resid 16700.07 Schwarz criterion 10.67600 Log likelihood -69.45391 F-statistic 16.98894 Durbin-Watson stat 1.970415 Prob(F-statistic) 0.000299 Hình 3.2: Hồi quy đa biến trên EVIEWS Mơ hình hồi quy mẫu: PRICEi = 129.0616 + 0.1548*SQFTi - 12.19276*BATHSi - 21.58752*BEDRMSi + uˆ i Biên soạn : ThS. Hồng Thị Hồng Vân 23
- Tập bài giảng mơn học: Kinh tế lượng 3.3. CÁC GIẢ THIẾT CƠ BẢN : Mơ hình hồi quy tuyến tính đa biến tuân thủ các giả thiết cơ bản như mơ hình hồi quy tuyến tính đơn biến như: (1) Mơ hình hồi quy tuyến tính với các tham số. (2) Tất cả các giá trị quan sát của mỗi biến Xki khơng được giống nhau; phải cĩ ít nhất một giá trị khác biệt, nghĩa là Var(Xki) ≠ 0 (3) Sai số ui là biến ngẫu nhiên với trung bình bằng khơng, nghĩa là E(ui/Xs) = 0. (4) Các giá trị quan sát Xki được cho và khơng ngẫu nhiên, điều này ngầm định rằng khơng tương quan với ui nghĩa là Cov (Xki, ui) = 0. 2 (5) Sai số ui cĩ phương sai khơng đổi với mọi i; nghĩa là Var(ui/Xs) = σ = const. (6) Hai sai số ui và us bất kỳ độc lập với nhau đối với mọi i ≠ s, nghĩa là Cov(ui,us)=0 (7) Số quan sát (cỡ mẫu) phải lớn hơn số hệ số hồi quy ước lượng (ở đây n > k). 2 (8) Sai số ui tuân theo phân phối chuẩn ui ~ N(0, σ ) Ngồi ra, mơ hình hồi quy tuyến tính đa biến cĩ cĩ các giả thiết bổ sung : (9) Khơng nhận dạng sai mơ hình (khơng sai dạng hàm, khơng thiếu biến quan trọng và thừa biến khơng quan trọng). (10) Khơng cĩ hiện tượng đa cộng tuyến hịan hảo (perfect multicollinearity hoặc exact linear relationship) trong mơ hình. Tức là, khơng tồn tại tập hợp các hệ số thỏa mãn biểu thức sau với mọi i: 1 + λ2 X2i + λ3X3i + L + λKXKi = 0 3.4. TÍNH CHẤT : Ước lượng OLS cho mơ hình hồi quy tuyến tính đa biến là BLUE (Best Linear Unbias Estimation). Nghĩa là trong tất cả các tổ hợp tuyến tính khơng thiên lệch của Y, ước lượng OLS của tham số ước lượng cĩ phương sai bé nhất. 3.5. ĐỘ CHÍNH XÁC CỦA ƯỚC LƯỢNG Do sự phức tạp của cơng thức tính phương sai của các tham số ước lượng và sự hỗ trợ tính tốn nhanh chĩng của các phần mềm, nên trong tập bài giảng này chỉ trình bày cơng thức tính phương sai và sai số chuẩn của các thơng số ước lượng cho mơ hình hồi quy tuyến tính 02 biến giải thích. Biên soạn : ThS. Hồng Thị Hồng Vân 24
- Tập bài giảng mơn học: Kinh tế lượng uˆ 2 Var( uˆ ) = σ2 = ∑ i i n − k u 2 ⇒ σ = ∑ i n − k x 2 ˆ ∑ 3i 2 VAR[] β2 = σ 2 2 2 ()()∑x 2i ∑x3i - ()∑x 2i x3i x 2 ˆ ∑ 3i 2 SE[]β2 = σ 2 2 2 ()()∑x 2i ∑x3i - ()∑x 2i x3i 3.6. ĐỘ THÍCH HỢP CỦA MƠ HÌNH: Trong mơ hình hồi quy tuyến tính bội để loại bỏ ảnh hưởng việc thêm biến làm bậc tự do của mơ hình giảm và làm hệ số xác định tăng người ta hay dùng một đại lượng đo 2 lường độ thích hợp của mơ hình là hệ số xác định điều chỉnh R ESS R 2 =1− TSS 2 ESS/(n − k) n −1 R = 1− = 1− (1− R 2 ) TSS /(n −1) n − k 2 Lưu ý: R cĩ thể xảy ra trường hợp âm. 2 Ngồi R , người ta cĩ đề nghị một số tiêu chuẩn khác để đo lường độ thích hợp của mơ hình, sau đây là 02 tiêu chuẩn được tính tốn sẵn trong phần mềm EVIEW: ⎛ ESS ⎞ 2k o Akaike Info Criterion: AIC = ⎜ ⎟e n ⎝ n ⎠ ⎛ ESS ⎞ k o Schwarz criterion: SCHWARZ = ⎜ ⎟n n ⎝ n ⎠ Với 2 tiêu chuẩn AIC và SCHWARZ, mơ hình cĩ 02 tiêu chuẩn này càng nhỏ thì độ thích hợp của dữ liệu đối với mơ hình càng cao. 3.7. KIỂM ĐỊNH CÁC GIẢ THUYẾT THỐNG KÊ: 3.7.1. Kiểm định các tham số riêng lẻ: Như trong Chương 2, kiểm định giả thuyết về một tham số hồi qui riêng lẻ được tiến hành bằng kiểm định t. Giả thuyết kiểm định: H0: βk = 0 → Xk khơng cĩ ảnh hưởng đối với Y. H1: βk ≠ 0 → Xk cĩ ảnh hưởng đối với Y. Biên soạn : ThS. Hồng Thị Hồng Vân 25
- Tập bài giảng mơn học: Kinh tế lượng Kỳ vọng: Bác bỏ H0. Xác Định Trị Thống Kê Kiểm Định ˆ βk tc = , t* = tα/2, n-k S ˆ βk Kết luận: Nếu | tc | > tα/2, n-k → Bác bỏ H0 Hay p-value 0 Khi đĩ miền bác bỏ là : tc tα, n-k 3.7.2. Kiểm định Wald (Kiểm định tổ hợp các tham số): Kiểm định này giúp xác định nên thêm vào hay bớt đi một nhĩm biến trong mơ hình, hay nĩi cách khác giúp chọn một trong hai mơ hình sau: - Mơ hình nhiều biến - gọi là mơ hình khơng giới hạn (Unrestricted model – U) - Mơ hình ít biến - gọi là mơ hình giới hạn (Restricted model – Ký hiệu là R) Phương trình hồi quy tổng thể của 02 mơ hình này như sau : (U): Yi = β1 + β2X2i + β3X3i + + βmXmi + βm+1X(m+1)i + + βkXki + ui (R): Yi = β1 + β2X2i + β3X3i + + βmXmi + ei Giả thuyết kiểm định: H0: βm+1 = βm+2 = = βk = 0 → Chọn mơ hình (R). H1: Cĩ ít nhất 01 số Bj khác 0 (với j = (m +1),k ) → Chọn mơ hình (U). Xác Định Trị Thống Kê Kiểm Định 2 2 (ESSR − ESSU ) /(k − m) (R U − R R ) /(k − m) Fc = = 2 ESSU /(n − k) (1− R U ) /(n − k) F* = Fα, k-m, n-k Kết luận: Nếu : Fc > F* (hay p-value < α )→ Bác bỏ H0 Biên soạn : ThS. Hồng Thị Hồng Vân 26
- Tập bài giảng mơn học: Kinh tế lượng Ví dụ: (U): PRICEi = β1 + β2SQFTi + β3BATHSi + β4BEDRMSi + ui (R): PRICEi = α1 + α2SQFTi + ei Giả thuyết kiểm định: H0: β3 = β4 = 0 → Chọn mơ hình (R). H1: β3 ≠ 0 hoặc β4 ≠ 0 → Chọn mơ hình (U). Xác Định Trị Thống Kê Kiểm Định Fc = 0.471106 5% → Khơng bác bỏ H0 với mức ý nghĩa α = 5% → Chọn mơ hình (R). 3.7.3. Kiểm định độ thích hợp của mơ hình: Kiểm định này giúp xác định các biến độc lập trong mơ hình cĩ ảnh hưởng lên biến phụ thuộc Y hay khơng. Đây là một trường hợp đặc biệt của kiểm định Wald. Ta cĩ: (PRF): Yi = β1 + β2X2i + β3X3i + + βkXki + ui Giả thuyết kiểm định: H0: β2 = β3 = = βk = 0 → Tất cả các biến khơng tác động đến Y H1: Cĩ ít nhất 1 số Bj khác 0 (với j = 2;k ) Biên soạn : ThS. Hồng Thị Hồng Vân 27
- Tập bài giảng mơn học: Kinh tế lượng Đây chính là trường hợp đặc biệt của kiểm định Wald. Trị thống kê kiểm định được tính tốn như sau: R 2 /(k −1) Fc = F* = Fα k-1, n-k (1− R 2 ) /(n − k) Kết luận: Nếu : Fc > F* (hay p-value < α )→ Bác bỏ H0 Trên EVIEW, kiểm định này được thực hiện kèm trong bảng kết quả chạy mơ hình (hình 3.1 và 3.2): (PRF): PRICEi = β1 + β2SQFTi + β3BATHSi + β4BEDRMSi + ui Giả thuyết kiểm định: H0: β2 = β3 = β4 = 0 H1: Cĩ ít nhất 1 số Bj khác 0 (với j = 2;4 ) Kết quả : Fc = 16.98894 hay p-value = 0.000299 < 5% → Bác bỏ H0 với α = 5% → Cĩ ít nhất một biến trong mơ hình tác động đến giá nhà. 3.8. CHIẾN LƯỢC XÂY DỰNG MƠ HÌNH : Trong giả thiết bổ sung cho mơ hình hồi quy tuyến tính đa biến, ta cĩ một giả thiết là: “Khơng nhận dạng sai mơ hình”. Trong phần này ta sẽ khảo sát một số vấn đề liên quan đến nhận dạng sai mơ hình là: mơ hình thiếu biến quan trọng hoặc thừa biến khơng quan trọng. 3.8.1. Hậu quả của việc thiếu biến quan trọng hoặc thừa biến khơng quan trọng: Mơ hình thiếu biến quan trọng : • Nếu một biến độc lập quan trọng của mơ hình bị bỏ sĩt (tham số hồi qui khác khơng cĩ ý nghĩa thống kê) thì các giá trị ước lượng của tất cả các tham số hồi qui cịn lại sẽ bị thiên lệch. • Các giá trị dự báo cũng bị thiên lệch. • Ước lượng phương sai của các tham số hồi qui cũng sẽ bị thiên lệch, và vì vậy các kiểm định giả thuyết sẽ khơng cĩ ý nghĩa. Mơ hình thừa biến khơng quan trọng : • Nếu một biến độc lập cĩ tham số hồi qui bằng khơng (nghĩa là, biến này là thừa) được đưa vào mơ hình, các giá trị ước lượng của các tham số hồi qui khác vẫn sẽ khơng thiên lệch và nhất quán. Biên soạn : ThS. Hồng Thị Hồng Vân 28
- Tập bài giảng mơn học: Kinh tế lượng • Phương sai của tham số hồi qui sẽ cao hơn các giá trị khi khơng cĩ biến khơng liên quan, và vì vậy các hệ số sẽ khơng hiệu quả. • Vì các phương sai ước lượng của các hệ số hồi qui là khơng thiên lệch, các kiểm định giả thuyết vẫn cĩ hiệu lực. 3.8.2. Chiến lược xây dựng mơ hình: Từ hai sai lầm này, để xác định mơ hình đúng người ta thường xây dựng mơ hình theo một trong hai chiến lược: Chiến lược từ tổng quát đến đơn giản: Từ mơ hình nhiều biến sau đĩ loại dần các biến khơng quan trọng để được mơ hình đúng cĩ ít biến hơn. Chiến lược từ đơn giản đến tổng quát Từ mơ hình ít biến sau đĩ thêm dần các biến quan trọng để được mơ hình đúng cĩ nhiều biến hơn. Ví dụ: Lập mơ hình xác định các nhân tố ảnh hưởng đến việc di chuyển bằng xe buýt của 40 thành phố khắp nước Mỹ. Các biến được đề nghị như sau: BUSTRAVL : Mức độ giao thơng bằng xe buýt ở đơ thị tính (ngàn hành khách/ giờ) FARE : Giá vé xe buýt (USD) GASPRICE : Giá một ga lơng nhiên liệu (USD) INCOME : Thu nhập bình quân đầu người (USD) POP : Dân số thành phố (ngàn người) DENSITY : Mật độ dân số tính (người/dặm vuơng) LANDAREA : Diện tích thành phố (dặm vuơng) Đặc trưng tổng quát của mơ hình, được cho dưới đây: BUSTRAV = β1+ β2FARE + β3GASPRICE + β4INCOME + β5POP + β6DENSITY+ β7LANDAREA + u Trước khi ước lượng mơ hình, ta xác định dấu kỳ vọng của các biến như sau: Giá vé xe buýt (FARE) tăng sẽ làm nhu cầu đi xe buýt giảm (lý thuyết kinh tế) nghĩa là làm mức độ giao thơng bằng xe buýt ở đơ thị (BUSTRAV) giảm, do đĩ ta kỳ vọng β2 mang dấu âm. Tương tự với các hệ số khác ta kỳ vọng: β2 (âm), β3 (dương), β4 (cĩ thể âm hoặc dương), β5 (dương), β6 (dương) và β7(âm). Biên soạn : ThS. Hồng Thị Hồng Vân 29
- Tập bài giảng mơn học: Kinh tế lượng Mơ hình tổng quát sẽ được chạy như sau: Dependent Variable: BUSTRAVL Method: Least Squares Date: 01/04/06 Time: 13:16 Sample: 1 40 Included observations: 40 Variable Coefficient Std. Error t-Statistic Prob. C 2744.680 2641.672 1.038994 0.3064 FARE -238.6544 451.7281 -0.528314 0.6008 GASPRICE 522.1132 2658.228 0.196414 0.8455 INCOME -0.194744 0.064887 -3.001294 0.0051 POP 1.711442 0.231364 7.397176 0.0000 DENSITY 0.116415 0.059570 1.954253 0.0592 LANDAREA -1.155230 1.802638 -0.640855 0.5260 R-squared 0.921026 Mean dependent var 1933.175 Adjusted R-squared 0.906667 S.D. dependent var 2431.757 S.E. of regression 742.9113 Akaike info criterion 16.21666 Sum squared resid 18213267 Schwarz criterion 16.51221 Log likelihood -317.3332 F-statistic 64.14338 Durbin-Watson stat 2.082671 Prob(F-statistic) 0.000000 Hình 3.4: Mơ hình tổng quát (khơng giới hạn) Theo kết quả ta thấy với mức ý nghĩa α = 10%, cĩ 04 biến FARE, GASPRICE, LANDAREA khơng cĩ ý nghĩa thống kê. Thực hiện kiểm định Wald để bỏ 03 biến này ra khỏi mơ hình: H0: β2 = β3 = β7 = 0 H1: β2 ≠0 hoặc β3 ≠ 0 hoặc β4 ≠ 0 Chạy EVIEW ta cĩ kết quả: Wald Test: Equation: Untitled Test Statistic Value df Probability F-statistic 0.315845 (3, 33) 0.8138 Chi-square 0.947535 3 0.8139 Null Hypothesis Summary: Normalized Restriction (= 0) Value Std. Err. C(2) -238.6544 451.7281 C(3) 522.1132 2658.228 C(7) -1.155230 1.802638 Restrictions are linear in coefficients. Hình 3.5: Kiểm định Wald để chọn mơ hình Ta thấy Fc = 0.315845 và p-value = 0.8138 > α → Khơng bác bỏ Ho → Chọn mơ hình R, hay nĩi cách khác nên bỏ 03 biến FARE, GASPRICE, LANDAREA ra khỏi mơ hình. Biên soạn : ThS. Hồng Thị Hồng Vân 30
- Tập bài giảng mơn học: Kinh tế lượng Mơ hình mới (R) là: Dependent Variable: BUSTRAVL Method: Least Squares Date: 01/04/06 Time: 13:31 Sample: 1 40 Included observations: 40 Variable Coefficient Std. Error t-Statistic Prob. C 2815.703 976.3007 2.884053 0.0066 INCOME -0.201273 0.062101 -3.241076 0.0026 POP 1.576575 0.120612 13.07148 0.0000 DENSITY 0.153421 0.034898 4.396311 0.0001 R-squared 0.918759 Mean dependent var 1933.175 Adjusted R-squared 0.911989 S.D. dependent var 2431.757 S.E. of regression 721.4228 Akaike info criterion 16.09497 Sum squared resid 18736228 Schwarz criterion 16.26386 Log likelihood -317.8993 F-statistic 135.7080 Durbin-Watson stat 1.878671 Prob(F-statistic) 0.000000 Hình 3.6: Mơ hình đơn giản (giới hạn) Tất cả các biến trong mơ hình đều cĩ ý nghĩa thống kê. Vậy: BUSTRAVL = 2815.7 - 0.2013INCOME + 1.5766POP + 0.1534DENSITY + u^. Lưu ý: Trong thực hành trên EVIEWS, khi thực hiện bỏ bớt biến từ mơ hình (U) ta nên bỏ từng biến một (Gợi ý: biến khơng quan trọng cĩ p-value lớn nhất). 3.9. HỒI QUY VỚI BIẾN ĐỊNH TÍNH: Tất cả các biến chúng ta gặp trước đây đều cĩ bản chất định lượng; nghĩa là các biến này cĩ các đặc tính cĩ thể đo lường bằng số. Tuy nhiên, hành vi của các biến kinh tế cũng cĩ thể phụ thuộc vào các nhân tố định tính như giới tính, trình độ học vấn, mùa, cơng cộng hay cá nhân v.v Chúng ta bắt đầu với việc xem xét trường hợp đơn giản nhất trong đĩ một biến định tính chỉ cĩ hai lựa chọn. Ví dụ: Tìm hiểu xem cĩ sự khác biệt về lương giữa nam và nữ khơng ta xem xét mơ hình đơn giản sau: WAGEi = β1 + δDi + ui ˆ ˆ WAGEi = β1 + δ Di + uˆ i (*) Trong đĩ: WAGEi : Lương của người i. Di Giới tính: Di = 1, nếu người i là nam Di Giới tính Di = 0, nếu người i là nữ Biên soạn : ThS. Hồng Thị Hồng Vân 31
- Tập bài giảng mơn học: Kinh tế lượng Lấy kỳ vọng cĩ điều kiện 2 vế của (*) ta được : E(WAGEi/Di=1) = β1 + β2 : Lương trung bình của nam E(WAGEi/Di=0) = β1 Lương trung bình của nữ Vậy sự khác biệt về lương trung bình của nam và nữ là β2. 3.9.1. Các dạng mơ hình: Mơ hình tổng quát: (PRF) : WAGEi = β1 + β2EXPERi + δ1Di + δ2EXPERi×Di + ui Các phương trình: Nam: WAGEi = (β1 + δ1) + (β2 + δ2)EXPERi + ui Nữ: WAGEi = β1 + β2EXPERi + ui ˆ ˆ ˆ ˆ (SRF) WAGEi = β1 + β2 EXPERi + δ 1Di + δ 2EXPERi×Di + uˆ i Các kiểm định liên quan đến biến định tính: Kiểm định 1: H0: δ1 = 0 → Khơng cĩ sự khác biệt về lương giữa nam và nữ, sự khác biệt này là do các yếu tố ngồi mơ hình. H1: δ1 ≠ 0 → Cĩ sự khác biệt về lương giữa nam và nữ, sự khác biệt này là do các yếu tố ngồi mơ hình. Kiểm định 2: H0: δ2 = 0 → Khơng cĩ sự khác biệt về lương giữa nam và nữ, sự khác biệt này là do số năm kinh nghiệm gây nên. H1: δ2 ≠ 0 → Cĩ sự khác biệt về lương giữa nam và nữ, sự khác biệt này là do số năm kinh nghiệm gây nên Các dạng mơ hình: - Dạng 1: δ1 = 0 và δ2 = 0: Khơng cĩ sự khác biệt về lương giữa nam và nữ. - Dạng 2: δ1 ≠ 0 và δ2 = 0: Cĩ sự khác biệt về lương giữa nam và nữ, sự khác biệt này là do các yếu tố ngồi mơ hình - Dạng 3: δ1 = 0 và δ2 ≠ 0: Cĩ sự khác biệt về lương giữa nam và nữ, sự khác biệt này là do số năm kinh nghiệm gây nên - Dạng 4: δ1 ≠ 0 và δ2 ≠ 0: Cĩ sự khác biệt về lương giữa nam và nữ, sự khác biệt này là do số năm kinh nghiệm và các yếu tố ngồi mơ hình gây nên. Biên soạn : ThS. Hồng Thị Hồng Vân 32
- Tập bài giảng mơn học: Kinh tế lượng Minh họa: Y Y nam i nam nữ i Yi Yi = Yi nữ Yi β β 2 β1+δ1 2 β1 β1 0 0 EXPERi EXPERi Dạng 1: δ1 = 0 và δ2 = 0 Dạng 2: δ1 ≠ 0 và δ2 = 0 Y nam Y nam i Yi i Yi nữ β2 + δ2 β2 + δ2 Yi nữ β Yi β 2 β1+δ1 2 β1 β1 0 0 EXPERi EXPERi Dạng 3: δ1 = 0 và δ2 ≠ 0 Dạng 4: δ1 ≠ 0 và δ2 ≠ 0 Ví dụ: Dependent Variable: WAGE Method: Least Squares Date: 01/09/06 Time: 17:13 Sample: 1 49 Included observations: 49 Variable Coefficient Std. Error t-Statistic Prob. C 1178.287 222.2657 5.301252 0.0000 EXPER 44.23393 24.27003 1.822574 0.0750 GENDER 822.2153 296.6991 2.771209 0.0081 EXPER*GENDER -35.45679 29.24061 -1.212587 0.2316 R-squared 0.255122 Mean dependent var 1820.204 Adjusted R-squared 0.205464 S.D. dependent var 648.2687 S.E. of regression 577.8457 Akaike info criterion 15.63460 Sum squared resid 15025756 Schwarz criterion 15.78903 Log likelihood -379.0477 F-statistic 5.137534 Durbin-Watson stat 1.727763 Prob(F-statistic) 0.003853 Biên soạn : ThS. Hồng Thị Hồng Vân 33
- Tập bài giảng mơn học: Kinh tế lượng 3.9.2. Biến giả nhiều thuộc tính: Số các lựa chọn cĩ thể cĩ của một biến định tính cĩ thể nhiều hơn hai. Ví dụ, đặt Y doanh số của một cơng ty, X là chi phí cho quảng cáo. Chúng ta kỳ vọng quan hệ giữa tiền tiết kiệm và thu nhập sẽ khác nhau theo các mùa khác nhau: Với một đặc trưng cĩ m thuộc tính ta sẽ đặt m – 1 biến giả. Ví dụ: Biến mùa vụ: 4 mùa: xuân, hạ, thu, đơng → 3 biến giả. D1 = 1, nếu là mùa xuân D1 = 0, nếu khơng là mùa xuân D2 = 1, nếu là mùa hạ D1 = 0, nếu khơng là mùa hạ D3 = 1, nếu là mùa thu D1 = 0, nếu khơng là mùa thu Yi : Doanh số, Xi : Chi phí quảng cáo Vậy phương trình hồi quy tổng quát: Yi = β1 + δ1D1i + δ2D2i + δ3D3i + β2Xi + δ4Xi D1i + δ5Xi D2i + δ6Xi D3i + ui Vậy phương trình hồi quy cho từng mùa: Mùa xuân: Yi = (β1 + δ1) + (β2 + δ4)Xi + ui Mùa hạ: Yi = (β1 + δ2) + (β2 + δ5)Xi + ui Mùa thu: Yi = (β1 + δ3) + (β2 + δ6)Xi + ui Mùa đơng: Yi = β1 + β2Xi + ui Biên soạn : ThS. Hồng Thị Hồng Vân 34
- Tập bài giảng mơn học: Kinh tế lượng Chương IV ĐA CỘNG TUYẾN (Multicollinearity) 4.1. GIỚI THIỆU: Một trong những giả thiết của mơ hình hồi qui tuyến tính đa biến là khơng cĩ hiện tượng đa cộng tuyến hồn hảo. Vậy hiện tượng đa cộng tuyến, đa cộng tuyến hồn hảo là gì, nĩ sẽ ảnh hưởng như thế nào đến mơ hình và cách khắc phục hiện tượng này sẽ được trình bày ở chương này. • Hiện tượng đa cộng tuyến là hiện tượng các biến độc lập trong mơ hình phụ thuộc lẫn nhau và cĩ quan hệ gần như tuyến tính. • Hiện tượng đa cộng tuyến hồn hảo là hiện tượng các biến độc lập cĩ mối quan hệ tuyến tính chính xác (exact linear relationship) được thể hiện được dưới dạng hàm số tuyến tính. λ1 + λ2X2i + λ3X3i + + λkXki = 0 Ví dụ : Ước lượng hàm tiêu dùng. Y : Tiêu dùng, X2 : Thu nhập và X3 : của cải X2 X3 Y 10 50 52 15 75 75 18 90 97 24 120 129 Dạng hàm: Yi = β1 + β2X2i + β3X3i + ui ˆ ˆ ˆ Yi = β1 + β2 X2i + β3 X3i + uˆ i Theo dữ liệu ta thấy : X2 và X3 cĩ mối quan hệ tuyến tính chính xác X3i - 5X2i = 0 ⇒ X3i = 5X2i ˆ ˆ ˆ Vậy Yi = β1 + β2 X2i + β3 5X2i + uˆ i ˆ ˆ ˆ Vậy Yi = β1 + (β2 + 5β3 )X2i + uˆ i ˆ ˆ Chúng ta chỉ cĩ thể ước lượng (β2 + 5β3 ) chứ khơng ước lượng riêng từng tham số hồi ˆ ˆ qui β2 và β3 được. Đa cộng tuyến hồn hảo thường rất ít khi xảy ra trong thực tế. Cịn đa cơng tuyến khơng hồn hảo thường hay xảy ra trong thực tế (Near collinearity) Biên soạn : ThS. Hồng Thị Hồng Vân 35
- Tập bài giảng mơn học: Kinh tế lượng 4.2. NGUỒN GỐC CỦA ĐA CỘNG TUYẾN (Multicollinearity) 4.2.1. Do phương pháp thu thập dữ liệu Các giá trị của các biến độc lập phụ thuộc lẫn nhau trong mẫu, nhưng khơng phụ thuộc lẫn nhau trong tổng thể Ví dụ: Người cĩ thu nhập cao hơn khuynh hướng sẽ cĩ nhiều của cải hơn. Điều này cĩ thể đúng với mẫu mà khơng đúng với tổng thể. Trong tổng thể sẽ cĩ các quan sát về các cá nhân cĩ thu nhập cao nhưng khơng cĩ nhiều của cải và ngược lại. 4.2.2. Dạng hàm mơ hình: Ví dụ các dạng hàm sau dễ xảy ra hiện tượng đa cộng tuyến: o Hồi qui dạng các biến độc lập được bình phương sẽ xảy ra đa cộng tuyến và đặc biệt khi phạm vi giá trị ban đầu của biến độc lập là nhỏ. o Các biến độc lập vĩ mơ được quan sát theo dữ liệu chuỗi thời gian o Nhập khẩu quốc gia phụ thuộc vào GDP và CPI (các chỉ số này được thu thập từ dữ liệu thời gian). Giải thích đa cộng tuyến theo ý nghĩa vĩ mơ? 4.3. HẬU QUẢ : 4.3.1. Đa cộng tuyến hồn hảo Chúng ta khơng thể ước lượng được mơ hình. Các phần mềm máy tính sẽ báo các tín hiệu sau: - “Matrix singular”: ma trận khác thường mà máy tính khơng thể thực hiện được khi ước lượng các hệ số hồi qui - “Exact collinearity encounted”. 4.3.2. Hệ quả khi cĩ đa cộng tuyến khơng hồn hảo (1) Ước lượng OLS vẫn BLUE - Ước lượng khơng chệch: trung bình các ước lượng từ mẫu lập lại sẽ hội tụ đến giá trị ước lượng của tổng thể. - Phương sai của hệ số ước lượng vẫn đạt minimum nhưng khơng cĩ nghĩa nhất thiết là nhỏ so với giá trị của ước lượng (2) Sai số chuẩn của các hệ số sẽ lớn. - Khoảng tin cậy lớn và thống kê t ít ý nghĩa. - Các ước lượng khơng thật chính xác. Biên soạn : ThS. Hồng Thị Hồng Vân 36
- Tập bài giảng mơn học: Kinh tế lượng - Do đĩ chúng ta dễ đi đến khơng cĩ cơ sở bác bỏ giả thiết “khơng” và điều này cĩ thể khơng đúng. (3) R2 rất cao cho dù thống kê t ít ý nghĩa - Tại sao hệ số xác định lại cao? Do khơng cĩ nhiều những biến đổi khác biệt giữa các biến số độc lập vì chúng thực sự cĩ mối quan hệ với nhau - Dễ dàng bác bỏ giả thuyết “khơng”của thống kê F và cho rằng mơ hình ước lượng cĩ gía trị (4) Các ước lượng và sai số chuẩn của ước lượng rất nhạy cảm với sự thay đổi của dữ liệu - Chỉ cần một sự thay đổi nhỏ trong mẫu dữ liệu sẽ kéo theo sự thay đổi lớn các hệ số ước lượng. - Bởi vì các hệ số ước lượng chứa đựng những mối quan hệ mạnh giữa các biến độc lập Ví dụ : Xem kết quả ước lượng hàm tiêu dùng: Y = 24.77 + 0.94X2i - 0.04X3i + u t (3.67) (1.14) (-0.53) R2=0.96, F = 92.40 Y : Tiêu dùng, X2 : Thu nhập và X3 : của cải Ta thấy: - R2 rất cao giải thích 96% biến đổi của hàm tiêu dùng, - Khơng cĩ biến độc lập nào cĩ ý nghĩa (thống kê t quá thấp). - Cĩ một biến sai dấu. - Giá trị thống kê F rất cao dẫn đến bác bỏ giả thuyết “khơng” và cho rằng mơ hình ước lượng cĩ ý nghĩa. - Biến thu nhập và của cải tương quan rất mạnh với nhau do đĩ khơng ước lượng được tác động biên chính xác cho thu nhập hoặc của cải lên tiêu dùng. Thực hiện các hồi quy sau: - Thực hiện hồi qui X3 theo X2 X3 = 7.54 + 10.19X2 + u (0.26) ( 62.04) R2 = .99 Hầu như chúng ta cĩ đa cộng tuyến hồn hảo giữa X2 và X3 - Hồi qui tiêu dùng theo thu nhập: Y = 24.45 + 0.51X2 + u (3.81) (14.24) R2= 0.96 Biến thu nhập trở nên cĩ ý nghĩa thống kê, nhưng trước lúc đĩ trong mơ hình đầu thì khơng cĩ ý nghĩa. Biên soạn : ThS. Hồng Thị Hồng Vân 37
- Tập bài giảng mơn học: Kinh tế lượng - Tương tự hồi qui thu nhập Y theo của cải: Y = 24.41 + 0.05X3 + u t (3.55) (13.29) R2 = 0.96 Biến của cải trở nên cĩ ý nghĩa thống kê, nhưng trước lúc đĩ trong mơ hình đầu thì khơng cĩ ý nghĩa. 4.4. NHẬN DẠNG : (1) R2 cao và thống kê t thấp. (2) Tương quan tuyến tính mạnh giữa các biến độc lập - Xây dựng ma trận hệ số tương quan cặp và quan sát để nhận diện độ mạnh của các tương quan từng cặp biến số độc lập - Xét về ý nghĩa kinh tế các biến cĩ khả năng tương quan cao (3) Thực hiện hồi qui phụ - Hồi qui giữa một biến độc lập với tất cả các biến độc lập với nhau và quan sát hệ số R2 của các hồi qui phụ - Thực hiện tính thống kê F R 2 ) /(k −1) Fc = (1− R 2 ) /(n − k) k số biến độc lập trong hồi qui phụ Nếu F > F* thì chúng ta cĩ thể kết luận rằng R2 khác khơng theo ý nghĩa thống kê và điều này cĩ nghĩa là cĩ đa cộng tuyến trong mơ hình. (4) Thừa số tăng phương sai (Variance inflation factor-VIF) 1 VIF = 2 1− rij rij là hệ số tương quan giữa hai biến độc lập trong mơ hình. Khi rij tăng làm VIF tăng và làm tăng mức độ đa cộng tuyến Nguyên tắc kinh nghiệm (Rule of thumb) VIF ≥ 10 → Cĩ hiện tượng đa cộng tuyến giữa hai biến độc lập trong mơ hình 4.5. CÁC GIẢI PHÁP KHẮC PHỤC ĐA CỘNG TUYẾN (1) Bỏ qua đa cộng tuyến nếu t > 2 (2) Bỏ qua đa cộng tuyến nếu R2 của mơ hình cao hơn R2 của mơ hình hồi qui phụ. (3) Bỏ qua đa cộng tuyến nếu mục tiêu xây dựng mơ hình sử dụng để dự báo chứ khơng phải kiểm định. Biên soạn : ThS. Hồng Thị Hồng Vân 38
- Tập bài giảng mơn học: Kinh tế lượng (4) Bỏ bớt biến độc lập. Ví dụ: bỏ biến của cải ra khỏi mơ hình hàm tiêu dùng. Điều này xảy ra với giả định rằng khơng cĩ mối quan hệ giữa biến phụ thuộc và biến độc lập loại bỏ mơ hình. Nếu lý thuyết khẳng định cĩ mối quan hệ với biến dự định loại bỏ thì việc loại bỏ này sẽ dẫn đến loại bỏ biến quan trọng và chúng ta mắc sai lầm về nhận dạng mơ hình (Specification Error). (5) Bổ sung dữ liệu hoặc tìm dữ liệu mới Tìm mẫu dữ liệu khác hoặc gia tăng cỡ mẫu. Nếu mẫu lớn hơn mà vẫn cịn đa cộng tuyến thì vẫn cĩ giá trị vì mẫu lớn hơn sẽ làm cho phương sai nhỏ hơn và hệ số ước lượng chính xác hơn so với mẫu nhỏ. (6) Thay đổi dạng mơ hình Mơ hình kinh tế lượng cĩ nhiều dạng hàm khác nhau. Thay đổi dạng mơ hình cũng cĩ nghĩa là tái cấu trúc mơ hình (7) Sử dụng thơng tin hậu nghiệm “priori information” Sử dụng kết quả của các mơ hình kinh tế lượng trước ít cĩ đa cộng tuyến Ví dụ: Ta cĩ thể biết tác động biên của của cải lên tiêu dùng chỉ bằng 1/10 so với tác động biên của của cải lên tiêu dùng β3 = 0.10*β2 Chạy mơ hình với điều kiện tiền nghiệm. Yi = β1 + β2X2i + 0.10*β2X3i + ui Yi = β1 + β2Xi + ui trong đĩ Xi = X2i + 0.1X3i Khi ước lượng được β2 thì suy ra β3 từ mối quan hệ tiền nghiệm trên. (8) Sử dụng sai phân cho các biến của mơ hình Sai phân làm cho vấn đề đa cộng tuyến cĩ thể nhẹ đi Quay trở lại ví dụ hàm tiêu dùng: Thu nhập và của cải cĩ mối quan hệ khá chặt chẽ và do đĩ khơng tránh khỏi đa cộng tuyến Chúng ta muốn ước lượng: Yt = β1 + β2X2t + β3X3t+ ut Ứng với t-1 Yt-1 = β1 + β2X2t-1 + β3X3t-1+ ut-1 Lấy sai phân các biến theo thời gian Yt-Yt-1= β2(X2t-X2t-1)+ β3(X3t-X3t-1)+vt Điều này cĩ thể giải quyết vấn đề đa cộng tuyến vì đa cộng tuyến xảy ra từ bản thân các biến độc lập chứ khơng xảy ra từ sai phân các biến này. Tuy nhiên cĩ thể vi phạm giả định chuẩn về sai số ngẫu nhiên. Biên soạn : ThS. Hồng Thị Hồng Vân 39
- Tập bài giảng mơn học: Kinh tế lượng (9) Kết hợp dữ liệu chéo và dữ liệu chuỗi thời gian Ví dụ: Nghiên cứu cầu xe hơi và chỉ cĩ dữ liệu chuỗi thời gian. lnYt = β1+ β2lnPRICEt+ β3lnINCOMEt +ut Trong đĩ : Yt số xe hơi bán ra trong thời đoạn t. Thơng thường giá và thu nhập tương quan mạnh với nhau theo thời gian nên chắc chắn mơ hình cĩ đa cộng tuyến khi sử dụng chuỗi thời gian Giả sử chúng ta cĩ dữ liệu chéo, chúng ta cĩ thể ước lượng độ co dãn theo thu nhập khi sử dụng dữ liệu chéo. Cịn độ co dãn theo giá chúng ta phải tìm từ chuỗi dữ liệu theo thời gian Ước lượng hàm hồi qui theo thời gian Yt = β1 + β2lnPt + ut Khi đĩ Yt = lnYt - β3lnINCOMEt Y đại diện cho số xe hơi bán ra sau khi loại trừ tác động của thu nhập Căn cứ vào β3 cho trước chúng ta ước lượng được độ co dãn cầu xe hơi theo giá nhưng khơng cĩ hiện tượng Đa cộng tuyến Tuy nhiên chúng ta phải giả định rằng, độ co dãn từ chuỗi thời gian và từ dữ liệu chéo là đồng nhất. Biên soạn : ThS. Hồng Thị Hồng Vân 40
- Tập bài giảng mơn học: Kinh tế lượng Chương V DẠNG HÀM Giả sử bạn cĩ một mơ hình kinh tế tiên đốn mối quan hệ giữa một biến phụ thuộc Y và các biến độc lập X. Trong nhiều trường hợp, mơ hình này sẽ khơng cho bạn biết dạng hàm mà mối quan hệ này cĩ trong dữ liệu, mặc dù mơ hình này sẽ thường cho bạn một số ý niệm về dạng cĩ thể cĩ của mối quan hệ. Giải pháp thơng thường là quyết định xem dạng hàm nào cĩ khả năng mơ tả tốt dữ liệu nhất, điều này phụ thuộc vào suy luận kinh tế hoặc phụ thuộc vào việc khảo sát dữ liệu. Sau đĩ, chúng ta thử xây dựng một số dạng hàm khác nhau và xem chúng cĩ cho ra các kết quả tương tự hay khơng, và nếu khơng, thì phải xem dạng hàm nào cho ra các kết quả hợp lý nhất. Chương này sẽ trình bày một số dạng hàm được sử dụng phổ biến nhất, cho biết chúng biểu hiện như thế nào, mơ tả các tính chất của chúng, và cho bạn một số ý tưởng về cách chọn lựa giữa các dạng hàm này. 5.1. HÀM TUYẾN TÍNH: Dạng hàm tổng quát: Yi = β1 + β2X2i + β3X3i + + βkXki + ui ∂Yi Ý nghĩa: βk = : Tác động biên riêng phần của Xki lên Yi ∂X ki Giữ các yếu tố khác cố định, khi Xk tăng lên một đơn vị thì Y tăng lên βk đơn vị, và điều này đúng bất kể các giá trị của X và Y là bao nhiêu. Đây là dạng hàm đơn giản nhất, tuy nhiên, do tính đơn giản này nên khả năng mơ tả phù hợp dữ liệu của dạng hàm này thường hạn chế. Ví dụ: Đường biểu diễn chi phí cĩ dạng Ci = β1 + β2Qi + ui ám chỉ là khi Q tăng thêm một đơn vị thì chi phí C tăng thêm β2 đơn vị. Điều này chỉ cĩ thể đúng trong trường hợp chi phí biên khơng đổi; nĩ khơng thể đúng trong trường hợp chi phí biên tăng dần (hay giảm dần). Nếu bạn nghĩ rằng chi phí biên tăng dần, bạn sẽ khơng muốn sử dụng dạng hàm tuyến tính. 5.2. HÀM ĐA THỨC. Dạng hàm này cho phép giải thích tác động của X lên Y phụ thuộc vào giá trị hiện hành của X. Dạng hàm tổng quát: 2 k Yi = β0 + β1Xi + β2Xi + + βkXi + ui 2 Ví dụ: Ci = β0 + β1Qi + β2Qi +ui Biên soạn : ThS. Hồng Thị Hồng Vân 41
- Tập bài giảng mơn học: Kinh tế lượng Tác dụng: ∂Ci Ước lượng chi phí biên (Tác động biên của Qi lên Ci): MC = = β1 + 2β2Qi ∂Qi Nghĩa là: Chi phí biên phụ thuộc vào Q. Tại điểm Q nào đĩ, khi Q tăng lên một đơn vị thì C tăng lên β1 + 2β2Qi đơn vị. Tác động biên gồm 02 thành phần : o Thành phần cố định theo Q: β1 o Thành phần thay đổi theo Q : 2β2Qi Lý thuyết gợi ý rằng ta thường cĩ MC tăng dần hoặc khơng đổi, do đĩ ta cĩ thể thực hiện kiểm định : β2 = 0 (MC tăng dần) hoặc β2 = 0 (MC khơng đổi) β Điểm cực trị (cực đại hoặc cực tiểu): MC = 0 ⇔ Q = − 1 2β2 Ví dụ : Đường Chi phí Trung bình Dài hạn (LRAC) là một đường hình chữ U thể hiện bằng một hàm bậc hai (đa thức bậc hai) : 2 Ví dụ: LRACi = β0 + β1Qi + β2Qi +ui Sử dụng dữ liệu 86 S&Ls cho năm 1975. Sản lượng Q được đo lường như là tổng tài sản cĩ. LRAC được đo lường như là chi phí hoạt động trung bình tính theo % của tổng tài sản cĩ. 2 SRF : LRAC = 2,38 – 0,615Q + 0,054 Q + uˆ i Sản lượng cho LRAC tối thiểu của hàm này khi tổng tài sản cĩ Q đạt 569 tỷ đơ la : ∂LRAC i = -0.615 + 2(0.054) Q = 0 ⇔ Q = 569 ∂Qi 5.3. HÀM LOG KÉP: β2 β3 ui Khảo sát hàm sản xuất Cobb-Douglas: Yi = β1K i Li e Trong đĩ: Y = sản lượng K = nhập lượng vốn L = nhập lượng lao động Đây la mối quan hệ phi tuyến, nhưng chúng ta cĩ thể biến đổi quan hệ này như sau: lnYi = ln β1 + β2 lnKi + β3lnLi + ui Đây là mơ hình tuyến tính trong các tham số nhưng khơng tuyến tính trong các biến số Mơ hình này tuyến tính theo lơgarít của các biến số. Mơ hình này được gọi là mơ hình lơgarít-lơgarít, lơgarít kép hay tuyến tính lơgarít Biên soạn : ThS. Hồng Thị Hồng Vân 42
- Tập bài giảng mơn học: Kinh tế lượng Dạng tổng quát: lnYi = ln β1 + β2 lnX2i + β3lnX3i + + βklnXki + ui Tác dụng: Tham số độ dốc của một mơ hình log kép đo lường độ co giãn riêng phần của Y theo X. ∂ ln Y ∂Y X k β2 = = × : là độ co giãn riêng phần của Y theo Xk. ∂ ln X k ∂X k Y ∂Y K Trong hàm Cobb-Douglas: β2 = × : là độ co giãn riêng phần của sản ∂K Y lượng theo vốn. Nghĩa là, giữ lao động khơng đổi, khi vốn tăng 1% thì sản lượng sẽ tăng β2%. ∂Y Y Tác động biên thay đổi : = β2 ∂X k X k Trong hàm Cobb – Douglas β2+ β3 đo lường hiệu quả theo qui mơ. Đáp ứng của sản lượng đối vơi thay đổi tương xứng trong các nhập lượng. o Nếu β2 + β3 =1: hiệu quả khơng đổi. Tăng gấp đơi nhap lượng thì sản lượng sẽ tăng gấp đơi. o Nếu β2 + β3 1: hiệu quả tăng dần Ví dụ 1: Dữ liệu về nơng nghiệp Đài Loan 1957-72: lnY = -3.34 + 0.49 lnK + 1.50 lnL + uˆ i t (-1.36) (4.80) (0.54) R2 = 0.89 Y GNP tính bằng triệu đơ la K là vốn thực tính bằng triệu đơ la L tính bằng triệu ngày cơng lao động • Độ co giãn của sản lượng theo vốn là 0,49 : Giữ nhập lượng lao động khơng đổi, gia tăng 1% nhập lượng vốn dẫn đến gia tăng 0,49% sản lượng. • Độ co giãn của sản lượng theo lao động là 1,50 : Giữ nhập lượng vốn khơng đổi, gia tăng 1% nhập lượng lao động dẫn đến gia tăng 1,5% sản lượng. • R2 cĩ nghĩa là 89% biến thiên trong lơgarít của sản lượng được giải thích bởi lơgarít của lao động và vốn. • Hiệu quả tăng theo qui mơ bởi vì: ˆ ˆ β2 + β3 = 1,99 Thực hiện kiểm định : β2 + β3 = 0 (Kiểm định Wald) ta cĩ : Biên soạn : ThS. Hồng Thị Hồng Vân 43
- Tập bài giảng mơn học: Kinh tế lượng Ví dụ 2: Ta cĩ thể lập hàm cầu như một hàm log kép : lnQi = ln β1 + β2 lnPcoffee + β3lnPtea + ui lnQ = -3.34 + 0.49 ln Pcoffee + 1.50 lnPtea + uˆ i Q : là mức tiêu dung cà phê mỗi ngày Pcoffee : là giá cà phê mỗi cân Anh Ptea : là giá trà mỗi cân Anh Kết quả: lnQ = 0.78 -0.25ln Pcoffee + 0.38lnPtea + uˆ i t (51.1) (-5.12) (3.25) • Độ co giãn theo giá riêng la – 0,25: Giữ các yếu tố khác khơng đổi, nếu giá gia tăng 1% thì lượng cầu sẽ giảm 0,25%. Khơng co giãn - giá trị tuyệt đối nhỏ hơn 1. • Độ co giãn theo gia-chéo là 0,38. Giữ các yếu tố khác khơng đổi, nếu giá trà gia tăng 1%, thì lượng cầu cà phê sẽ gia tăng 0,38% Nếu độ co giãn theo giá – chéo dương, thì cà phê va trà là các sản phẩm thay thế. Nếu độ co giãn theo gia-chéo âm, thì đĩ là các sản phẩm bổ trơ. Hàm Cobb-Douglass Tổng quát β2 β3 rt ui Khảo sát hàm sản xuất Cobb-Douglas: Yi = β1K i Li e e Trong đĩ: Y = sản lượng K = nhập lượng vốn L = nhập lượng lao động t = thời đọan - xu hướng thời gian (năm) Ta cĩ thể biến đổi quan hệ này như sau: lnYi = ln β1 + β2 lnKi + β3lnLi + rt + ui ∂ ln Y ∂Y / Y ∆Y / Y r = = ≈ : tốc độ thay đổi tương đối hàng năm của Y. ∂t ∂t ∆t 5.4. HÀM BÁN LOG Sử dụng mơ hình này khi chúng ta quan tâm đến tốc độ tăng trưởng của biến nào đĩ như mối quan hệ giữa tốc độ tăng thu nhập theo sự thay đổi tuyệt đối của số năm học hoặc số năm kinh nghiệm Ví dụ: Giả sử chúng ta cĩ 100.000.000 VNĐ và chúng ta gơi số tiền này vào ngân hàng với lãi suất r = 8%/ năm. Sau một năm, số tiền này sẽ tăng lên đến: Y1 = 100.000.000(1 + 0.08) = 108.000.000 Biên soạn : ThS. Hồng Thị Hồng Vân 44
- Tập bài giảng mơn học: Kinh tế lượng Sau hai năm, số tiền này sẽ tăng lên đến: Y2 = 108.000.000(1 + 0.08) = 100.000.000(1 + 0.08)2 = 116.064.000 t Vậy sau t năm, số tiền này sẽ tăng lên Yt = 100.000.000(1 + 0.08) t Vậy: cơng thức lãi kép: Yt = Y0 (1 + r) Y0 là giá trị ban đầu của Y Yt là giá trị của Y vào thơi điểm t r là tỷ lệ tăng trưởng kép của Y Lấy lơgarít cơ số e của cơng thức lãi kép : t Yt = Y0 (1 + r) ⇔ lnYt= lnY0 + tln(1 + r) Đặt β1 = lnY0, β2 = ln(1 + r) và viết lại và thêm so hạng sai số vào : ⇔ lnYt= β1 + β2t + ut Dạng hàm tổng quát: LnYi = β1 + β2X2i + β3X3i + + βkXki + ui ∂ ln Y ∂Y / Y ∆Y / Y β2 = = ≈ : ∂X ∂X ∆X Hệ số độ dốc đo lường thay đổi tương đối của Y đối với sự thay đổi tuyệt đối cho trước trong giá trị của biến giải thích Ví dụ: Ln(GDP thực) = 6,9636 + 0,0269t SE (0,0151) (0,0017) R2 = 0,95 • Hệ số độ dốc đo lường tốc độ tăng trưởng: GDP thực tăng trưởng với tốc độ 0,0269 mỗi năm, hay 2,69 phần trăm mỗi năm. • Lấy đối lơgarít cơ số e của 6,9636 để chỉ ra rằng vào đầu năm 1969, GDP thực ước lượng vào khoảng 1057 tỷ đơ la, nghĩa là ở t = 0 • Tính tốc độ tăng trưởng kép r 2 β = ln(1 + r) → eβ2 = (1 + r) → r = eβ2 -1 = 1,0273 - 1 = 0,0273 5.5. CÁC DẠNG HÀM KHÁC: Biên soạn : ThS. Hồng Thị Hồng Vân 45
- Tập bài giảng mơn học: Kinh tế lượng Chương VI HIỆN TƯỢNG PHƯƠNG SAI CỦA SAI SỐ THAY ĐỔI (Heteroscedasticity) 6.1. GIỚI THIỆU: Một trong những giả thiết quan trọng của mơ hình hồi quy tuyến tính ước lượng theo phương pháp OLS là các số hạng sai số ui cĩ phân phối giống nhau với trị trung bình bằng khơng và phương sai khơng đổi là σ2. Điều này cĩ nghĩa là mức độ phân tán của giá trị biến phụ thuộc quan sát được (Y) xung quanh đường hồi qui như nhau cho tất cả các quan sát. Tuy nhiên, trong nhiều trường hợp thơng thường cĩ liên quan đến những dữ liệu chéo, giả thuyết này cĩ thể sai. Hiện tượng như vậy được gọi là phương sai của sai số thay đổi (Heteroscedasticity - HET). 2 Vậy: Var(ui) = σ → Phương sai của sai số khơng đổi 2 2 Var(ui) = σi ≠ σ → Phương sai của sai số thay đổi 6.2. HẬU QUẢ: 6.2.1. Tác động lên tính chất của các ước lượng OLS: Nếu mơ hình cĩ hiện tượng phương sai của sai số thay đổi (HET), thì các tính chất: khơng chệch và nhất quán khơng bị vi phạm nếu ta sử dụng OLS để ước lượng các hệ số hồi quy. ˆ Nghĩa là: E(βk ) = βk 6.2.2. Tác Động Lên Các Kiểm Định Giả Thuyết Ta biết phương sai của các ước lượng phụ thuộc vào phương sai của sai số, do nếu mơ hình cĩ hiện tượng HET thì phương sai của các các tham số ước lượng theo OLS cũng sẽ khơng cịn nhỏ nhất và nhất quán nữa. Điều này sẽ dẫn đến các kiểm định giả thuyết khơng cịn giá trị nữa. 2 Nghĩa là: σi ≠ const → S ˆ = f(σi) → t ˆ khơng cịn ý nghĩa. βK βK Biên soạn : ThS. Hồng Thị Hồng Vân 46
- Tập bài giảng mơn học: Kinh tế lượng 6.2.3. Tác Động Lên Việc Dự Báo Do các ước lượng OLS vẫn khơng chệch, nên các dự báo dựa trên những giá trị ước lượng này cũng sẽ khơng thiên lệch. Nhưng do các ước lượng là khơng hiệu quả, nên các dự báo cũng sẽ khơng hiệu quả. Nĩi cách khác, độ tin cậy của những dự báo này (đo lường bằng phương sai của chúng) sẽ kém. Tĩm lại: Khi mơ hình cĩ hiện tượng HET thì mơ hình khơng cịn BLUE. 6.3. NGUYÊN NHÂN XẢY RA HIỆN TƯỢNG HET - Do bản chất của các mối quan hệ kinh tế: Cĩ nhiều mối kinh tế đã chứa đựng hiện tượng này, ví dụ: Thu nhập tăng thì tiết kiệm cũng tăng. - Do kỹ thuật thu thập dữ liệu. - Do con người học được hành vi trong quá khứ. 6.4. NHẬN DẠNG HIỆN TƯỢNG HET 6.4.1. Bằng trực gíac và kinh nghiệm: Làm việc thường xuyên với dữ liệu, ta sẽ cĩ một “cảm giác” tốt hơn với dữ liệu, thơng thường với dữ liệu chéo (cross-sectional data) khả năng cĩ hiện tượng HET rất cao. 6.4.2. Phân tích bằng đồ thị (Graphical analysis) Để phát hiện HET người ta thường dùng các đồ thị phân tán giữa: (Xi, Yi); (Xi; ui) (Xi; 2 ˆ ui ) và thay thế Xi bằng Yi với mơ hình đa biến. Khơng cĩ HET Cĩ HET Hình 6.1: Đồ thị (Xi, Yi) nhận biết hiện tượng HET Biên soạn : ThS. Hồng Thị Hồng Vân 47
- Tập bài giảng mơn học: Kinh tế lượng Khơng cĩ HET Cĩ HET Hình 6.2: Đồ thị ( Xiui,) nhận biết hiện tượng HET Khơng cĩ HET Cĩ HET 2 Hình 6.3: Đồ thị ( Xi,ui ) nhận biết hiện tượng HET Ví dụ : Data8-2.wf1 của Ramanathan chứa dữ liệu về tổng thu nhập cá nhân và chi tiêu cho đi lại trong nước (1993) đối với 50 tiểu bang và Thủ đơ Washington của Mỹ. Các biến trong file này là: EXPTRAV : Chi tiêu cho đi lại tính bằng tỷ đơ la (cĩ giá trị từ 0,708-42,48). INCOME : Thu nhập cá nhân tính bằng tỷ đơ la (cĩ giá trị từ 9,3-683,5) POP : Dân số tính bằng triệu người (cĩ giá trị từ 0,47-31,217). Thực hiện mơ hình hồi quy đơn giản sau: EXPTRAVi = β1 + β2 INCOMEi + ui Dependent Variable: EXPTRAV Method: Least Squares Date: 10/27/04 Time: 16:57 Sample: 1 51 Included observations: 51 Variable Coefficient Std. Error t-Statistic Prob. C 0.498120 0.535515 0.930170 0.3568 INCOME 0.055573 0.003293 16.87558 0.0000 R-squared 0.853199 Mean dependent var 6.340706 Adjusted R-squared 0.850203 S.D. dependent var 7.538343 S.E. of regression 2.917611 Akaike info criterion 5.017834 Sum squared resid 417.1103 Schwarz criterion 5.093591 Log likelihood -125.9548 F-statistic 284.7850 Durbin-Watson stat 2.194928 Prob(F-statistic) 0.000000 Hình 6.4: Kết quả mơ hình hồi quy cơ bản của ví dụ Biên soạn : ThS. Hồng Thị Hồng Vân 48
- Tập bài giảng mơn học: Kinh tế lượng Vậy: EXPTRAVi = 0,49812 + 0,055573 INCOMEi + uˆi Để kiểm tra HET trong mơ hình hồi qui này ta sẽ vẽ đồ thị sau: 2 Đồ thị giữa (Xi, ui) Đồ thị giữa (Xi, ui ) Hình 6.5: Đồ thị nhận biết hiện tượng HET Dựa vào đồ thị nĩi trên, ta cĩ thể nĩi cĩ dấu hiệu cĩ hiện tượng HET trong mơ hình. Lưu ý: Bằng trực giác, kinh nghiệm hay đồ thị chỉ cho ta biết dấu hiệu để nhận dạng hiện tượng HET. Để cĩ kết luận chính thức về hiện tượng HET ta phải thực hiện các kiểm định phù hợp. 6.4.3. Kiểm định nhân tử Lagrange (Lagrange Multiplier Test – LM Test): Phương trình hồi quy tổng thể: Yi = β1 + β2X2i + β2X3i + + βKXKi +ui Các bước thực hiện: Bước 1: Thực hiện hồi quy phụ (thay σi bằng ui) theo một trong những cách sau: a) Glejser: σi = α1 + α2Z2i + α2Z3i + + αpZpi +νi b) Breush-Pagan: ⏐σi ⏐= α1 + α2Z2i + α3Z3i + + αpZpi +νi 2 c) God Fray: ln(σi )= α1 + α2Z2i + α3Z3i + + αpZpi +νi 2 2 2 d) White: σi = α1 + α2X2i + α3X3i + α4 X 2i + α5 X 3i + α6X2iX3i + + αpZpi +νi Biên soạn : ThS. Hồng Thị Hồng Vân 49
- Tập bài giảng mơn học: Kinh tế lượng Bước 2: Phát biểu gỉa thiết: H0: α2 = α2 = = αp = 0 Khơng cĩ hiện tượng HET. H1: Cĩ ít nhất 1 số αj ≠ 0 (j = 1,p ) Khơng cĩ hiện tượng HET. 2 Bước 3: Tính χtt = nR hqp 2 2 Tra bảng χ * = χ p-1,α 2 Nếu:χtt > χ * (hay p-value >α) → Bác bỏ Ho. Trong thực hành EVIEWS ta nên thực hiện kiểm định kiểm tra HET bằng phương trình hồi quy phụ White. Ví dụ: Kiểm tra HET của ví dụ trên bằng kiểm định WHITE với chọn α = 10%. Phương trình hồi quy tổng thể: EXPTRAVi = β1 + β2 INCOMEi + ui Phương trình hồi quy phụ theo White Test: 2 2 ut = α1 + α2INCOMEt + α3INCOMEt + νt Kết quả mơ hình: White Heteroskedasticity Test: F-statistic 2.537633 Probability 0.089614 Obs*R-squared 4.876820 Probability 0.087300 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 10/27/04 Time: 18:25 Sample: 1 51 Included observations: 51 Variable Coefficient Std. Error t-Statistic Prob. C -1.689561 5.950486 -0.283937 0.7777 INCOME 0.126986 0.073163 1.735656 0.0890 INCOME^2 -0.000132 0.000127 -1.039498 0.3038 R-squared 0.095624 Mean dependent var 8.178634 Adjusted R-squared 0.057942 S.D. dependent var 26.00254 S.E. of regression 25.23798 Akaike info criterion 9.351600 Sum squared resid 30573.88 Schwarz criterion 9.465237 Log likelihood -235.4658 F-statistic 2.537633 Durbin-Watson stat 2.147294 Prob(F-statistic) 0.089614 Hình 6.6: Kiểm định White để nhận dạng hiện tượng HET của mơ hình 6.4 Giả thiết kiểm định: H0 : α2 = α3 = 0 H1 : α2 ≠ 0 hoặc α3 ≠ 0 * Ta cĩ: χ = χ p−1,α = χ 2,10% = 4.605 2 * nRhqp = 4.876820> χ (hoặc theo p-value = 0.087300 < 10%) ⇒ Bác bỏ H0 : Cĩ hiện tượng phương sai của sai số thay đổi. Biên soạn : ThS. Hồng Thị Hồng Vân 50
- Tập bài giảng mơn học: Kinh tế lượng 6.5. BIỆN PHÁP KHẮC PHỤC 6.5.1. Bình phương tốí thiểu tổng quát (hoặc trọng số): (Generalized Least Squares – GSL or Weighted Least Squares – WLS) Xét mơ hình hồi quy tổng thể: Yi = β1 + β2X2i + β2X3i + + βKXKi +ui Mơ hình cĩ Var(ui) = σi biết trước. Chia các số hạng cho σi, chúng ta cĩ mơ hình hiệu chỉnh như sau: Y u i 1 X 2i X 3i X ki i = β1 + β2 + β2 + + βk + σ σ i σi σi σi σi i * Yi * 1 * X 2i * X 3i * X ki * u i Đặt Yi = ; Xi = ; X2i = ; X3i = ; Xki = ; ui = σi σi σi σi σi σi * * * * * * Yi = β1X1i + β2X2i + β2X3i + + βKXKi +ui (*) 2 * ⎡ u i ⎤ Var(u i ) σi Ta cĩ: Var(ui ) = Var ⎢ ⎥ = 2 = 2 =1. ⎣σi ⎦ σi σi Mơ hình (*) khơng cĩ số hạng sai số khơng đổi nên sẽ cĩ tính BLUE. Thủ tục GLS được áp dụng cho trường hợp phương sai thay đổi thì cũng giống như thủ tục bình phương tối thiểu cĩ trọng số (WLS). 1 Đặt trọng số wi = và mơ hình (*) cĩ thể được viết lại như sau: σi wiYi = wiβ1 + β2wiX2i + β2wiX3i + + βKwiXKi +wiui 6.5.2. Bình Phương Tối Thiểu Tổng Quát Khả Thi (FGLS) Một cách tổng quát, cấu trúc của phương sai của sai số thay đổi là khơng biết (nghĩa là σi khơng biết trước), vì vậy GLS khĩ thực hiện. Để cải thiện điều này, trước tiên ta phải tìm cách ước lượng của σi bằng một số cách và sau đĩ sử dụng thủ tục WLS. Để ước lượng σi ta cĩ thể dùng các phương trình hồi quy phụ của các tác giả Glejser, Breush-Pagan, God Fray, White Phương pháp này gọi là Bình Phương Tối Thiểu Tổng Quát Khả Thi (FGLS) hay Bình Phương Tối Thiểu cĩ trọng số WLS. Ví dụ: Thực hiện khắc phục hiện tượng phương sai thay đổi của ví dụ trên: 2 2 Thực hiện hồi quy: ut = α1 + α2INCOMEt + α3INCOMEt + νt Biên soạn : ThS. Hồng Thị Hồng Vân 51
- Tập bài giảng mơn học: Kinh tế lượng Dependent Variable: USQ Method: Least Squares Date: 10/27/04 Time: 18:37 Sample: 1 51 Included observations: 51 Variable Coefficient Std. Error t-Statistic Prob. C -1.689561 5.950486 -0.283937 0.7777 INCOME 0.126986 0.073163 1.735656 0.0890 INCOME^2 -0.000132 0.000127 -1.039498 0.3038 R-squared 0.095624 Mean dependent var 8.178634 Adjusted R-squared 0.057942 S.D. dependent var 26.00254 S.E. of regression 25.23798 Akaike info criterion 9.351600 Sum squared resid 30573.88 Schwarz criterion 9.465237 Log likelihood -235.4658 F-statistic 2.537633 Durbin-Watson stat 2.147294 Prob(F-statistic) 0.089614 Hình 6.7: Kiểm định White để nhận dạng hiện tượng HET (cách trực tiếp) Tạo biến: usqf từ forecast Genr w=1/@sqrt(abs(usqf)) Thực hiện hồi quy mơ hình bằng WLS : Dependent Variable: EXPTRAV Method: Least Squares Date: 01/11/06 Time: 14:56 Sample: 1 51 Included observations: 51 Weighting series: W Variable Coefficient Std. Error t-Statistic Prob. C 0.851923 0.420225 2.027302 0.0481 INCOME 0.052208 0.004773 10.93874 0.0000 Weighted Statistics R-squared 0.535902 Mean dependent var 4.748416 Adjusted R-squared 0.526431 S.D. dependent var 3.521999 S.E. of regression 2.423712 Akaike info criterion 4.646903 Sum squared resid 287.8446 Schwarz criterion 4.722661 Log likelihood -116.4960 F-statistic 119.6560 Durbin-Watson stat 2.187902 Prob(F-statistic) 0.000000 Unweighted Statistics R-squared 0.850070 Mean dependent var 6.340706 Adjusted R-squared 0.847010 S.D. dependent var 7.538343 S.E. of regression 2.948538 Sum squared resid 426.0000 Durbin-Watson stat 2.172427 Hình 6.8: Thực hiện hồi quy theo WLS theo trọng số từ hồi quy phụ White Kiểm tra hiện tượng HET trong mơ hình 6.9 ta thấy mơ hình này đã khơng cịn HET. Biên soạn : ThS. Hồng Thị Hồng Vân 52
- Tập bài giảng mơn học: Kinh tế lượng White Heteroskedasticity Test: F-statistic 0.006038 Probability 0.993981 Obs*R-squared 0.012827 Probability 0.993607 Test Equation: Dependent Variable: STD_RESID^2 Method: Least Squares Date: 01/11/06 Time: 14:57 Sample: 1 51 Included observations: 51 Variable Coefficient Std. Error t-Statistic Prob. C 5.409998 5.199220 1.040540 0.3033 INCOME 0.001794 0.063926 0.028059 0.9777 INCOME^2 1.72E-06 0.000111 0.015523 0.9877 R-squared 0.000252 Mean dependent var 5.644011 Adjusted R-squared -0.041405 S.D. dependent var 21.60880 S.E. of regression 22.05161 Akaike info criterion 9.081671 Sum squared resid 23341.14 Schwarz criterion 9.195308 Log likelihood -228.5826 F-statistic 0.006038 Durbin-Watson stat 2.080884 Prob(F-statistic) 0.993981 Hình 6.9: Kiểm định White để nhận dạng hiện tượng HET của mơ hình 6.8 6.5.3. Phương sai của sai số thay đổi với tỷ số biết trước Giả sử tính phương sai của sai số thay đổi được tính với thơng qua một biến Zi biết trước như sau: 2 2 2 Var(ui) = σi = σ Zi . Vậy: σi = σZi Nĩi cách khác, độ lệch chuẩn của sai số tỷ lệ với một số biến Zi biết trước, hằng số của tỷ lệ này là σ. Ta cĩ: Yi = β1 + β2X2i + β2X3i + + βKXKi +ui Y u i 1 X 2i X 3i X ki i = β1 + β2 + β2 + + βk + Z Z i Zi Zi Zi Zi i Y u * i * 1 * X 2i * X 3i * X ki * i Đặt Yi = ; Xi = ; X2i = ; X3i = ; Xki = ; ui = Z Z i Zi Zi Zi Zi i * * * * * * Yi = β1X1i + β2X2i + β2X3i + + βKXKi +ui (*) 2 * ⎡ u i ⎤ Var(u i ) σi 2 Ta cĩ: Var(ui ) = Var ⎢ ⎥ = = 2 2 = σ = const ⎣Zi ⎦ Var(Zi ) σi / σ Ví dụ : Phương trình hồi quy tổng thể: EXPTRAVi = β1 + β2 INCOMEi + ui. σi Ta ta kỳ vọng σi và POPi cĩ quan hệ như sau: σi = σPOPi → σ = POPi Để khử hiện tượng phương sai thay đổi ta chia cả 02 vế cho POPi: EXPTRAV β β INCOME i = 1 + 2 i + σ (*) POPi POPi POPi Biên soạn : ThS. Hồng Thị Hồng Vân 53
- Tập bài giảng mơn học: Kinh tế lượng EXPTRAV Vậy: i : Tổng chi tiêu bình quân đầu người cho di chuyển POPi INCOME i : Thu nhập bình quân đầu người (tỷ đơla) POPi Thực hiện ước lượng (*) là thực hiện hồi quy mơ hình cơ bản với trọng số 1/POPi: Dependent Variable: EXPTRAV Method: Least Squares Date: 01/11/06 Time: 14:53 Sample: 1 51 Included observations: 51 Weighting series: 1/INCOME Variable Coefficient Std. Error t-Statistic Prob. C 0.572408 0.293665 1.949190 0.0570 INCOME 0.058816 0.011046 5.324864 0.0000 Weighted Statistics R-squared 0.071958 Mean dependent var 2.761030 Adjusted R-squared 0.053018 S.D. dependent var 2.110383 S.E. of regression 2.053677 Akaike info criterion 4.315566 Sum squared resid 206.6618 Schwarz criterion 4.391324 Log likelihood -108.0469 F-statistic 28.35417 Durbin-Watson stat 2.234715 Prob(F-statistic) 0.000003 Unweighted Statistics R-squared 0.847199 Mean dependent var 6.340706 Adjusted R-squared 0.844081 S.D. dependent var 7.538343 S.E. of regression 2.976634 Sum squared resid 434.1571 Durbin-Watson stat 2.090936 Hình 6.10: Thực hiện hồi quy theo WLS theo trọng số 1/INCOME Kiểm tra HET của mơ hình 6.10 kết quả: White Heteroskedasticity Test: F-statistic 0.525198 Probability 0.594797 Obs*R-squared 1.092147 Probability 0.579220 Test Equation: Dependent Variable: STD_RESID^2 Method: Least Squares Date: 01/11/06 Time: 14:55 Sample: 1 51 Included observations: 51 Variable Coefficient Std. Error t-Statistic Prob. C 7.903660 4.766589 1.658137 0.1038 INCOME -0.053372 0.058607 -0.910674 0.3670 INCOME^2 6.65E-05 0.000101 0.655747 0.5151 R-squared 0.021415 Mean dependent var 4.052192 Adjusted R-squared -0.019360 S.D. dependent var 20.02379 S.E. of regression 20.21668 Akaike info criterion 8.907916 Sum squared resid 19618.29 Schwarz criterion 9.021553 Log likelihood -224.1519 F-statistic 0.525198 Durbin-Watson stat 2.115062 Prob(F-statistic) 0.594797 Hình 6.11: Kiểm định White để nhận dạng hiện tượng HET của mơ hình 6.10 Vậy mơ hình khơng cịn hiện tượng HET. Biên soạn : ThS. Hồng Thị Hồng Vân 54
- Tập bài giảng mơn học: Kinh tế lượng 6.5.4. Tái cấu trúc mơ hình: Hiện tượng phương sai thay đổi cĩ thể xảy ra trong trường hợp nhận dạng sai dạng hàm của mơ hình, trong trường hợp này ta phải xây dựng lại mơ hình bằng một dạng hàm phù hợp. Ví dụ: Xét mơ hình sau: VAi = β1 + β2Ki + β3Li + ui Trong đĩ: VA = sản lượng K = nhập lượng vốn L = nhập lượng lao động Mơ hình: Dependent Variable: VA Method: Least Squares Date: 01/19/06 Time: 16:02 Sample: 1 27 Included observations: 27 Variable Coefficient Std. Error t-Statistic Prob. L 2.338136 1.038966 2.250445 0.0339 K 0.471043 0.112439 4.189327 0.0003 C 114.3376 173.4314 0.659267 0.5160 R-squared 0.959805 Mean dependent var 2340.201 Adjusted R-squared 0.956455 S.D. dependent var 2251.659 S.E. of regression 469.8642 Akaike info criterion 15.24720 Sum squared resid 5298536. Schwarz criterion 15.39119 Log likelihood -202.8372 F-statistic 286.5410 Durbin-Watson stat 2.060297 Prob(F-statistic) 0.000000 Kiểm tra HET của mơ hình : White Heteroskedasticity Test: F-statistic 5.785285 Probability 0.002446 Obs*R-squared 13.84127 Probability 0.007819 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 01/19/06 Time: 16:07 Sample: 1 27 Included observations: 27 Variable Coefficient Std. Error t-Statistic Prob. C 29191.15 207568.1 0.140634 0.8894 L -1491.415 1721.318 -0.866438 0.3956 L^2 0.430014 1.730384 0.248508 0.8060 K 329.9923 137.7174 2.396156 0.0255 K^2 -0.014946 0.017986 -0.830987 0.4149 R-squared 0.512640 Mean dependent var 196242.1 Adjusted R-squared 0.424029 S.D. dependent var 345587.3 S.E. of regression 262275.8 Akaike info criterion 27.95776 Sum squared resid 1.51E+12 Schwarz criterion 28.19773 Log likelihood -372.4297 F-statistic 5.785285 Durbin-Watson stat 1.740627 Prob(F-statistic) 0.002446 Kết quả: Cĩ HET ở mức α = 10%. Biên soạn : ThS. Hồng Thị Hồng Vân 55
- Tập bài giảng mơn học: Kinh tế lượng Thay đổi dạng hàm thành dạng hàm Cobb-Douglas như sau: β2 β3 ui VA i = β1K i Li e Đây la mối quan hệ phi tuyến, nhưng chúng ta cĩ thể biến đổi quan hệ này như sau: lnVAi = ln β1 + β2 lnKi + β3lnLi + ui Dependent Variable: LOG(VA) Method: Least Squares Date: 01/19/06 Time: 16:03 Sample: 1 27 Included observations: 27 Variable Coefficient Std. Error t-Statistic Prob. C 1.170644 0.326782 3.582339 0.0015 LOG(K) 0.375710 0.085346 4.402204 0.0002 LOG(L) 0.602999 0.125954 4.787457 0.0001 R-squared 0.943463 Mean dependent var 7.443631 Adjusted R-squared 0.938751 S.D. dependent var 0.761153 S.E. of regression 0.188374 Akaike info criterion -0.396336 Sum squared resid 0.851634 Schwarz criterion -0.252355 Log likelihood 8.350541 F-statistic 200.2489 Durbin-Watson stat 1.885989 Prob(F-statistic) 0.000000 Kiểm tra HET của mơ hình : White Heteroskedasticity Test: F-statistic 1.380966 Probability 0.272917 Obs*R-squared 5.418726 Probability 0.246966 Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 01/19/06 Time: 16:23 Sample: 1 27 Included observations: 27 Variable Coefficient Std. Error t-Statistic Prob. C -0.583444 0.856274 -0.681376 0.5027 LOG(K) -0.112749 0.269050 -0.419065 0.6792 (LOG(K))^2 0.011926 0.019241 0.619808 0.5418 LOG(L) 0.358410 0.457469 0.783463 0.4417 (LOG(L))^2 -0.038152 0.040526 -0.941415 0.3567 R-squared 0.200694 Mean dependent var 0.031542 Adjusted R-squared 0.055365 S.D. dependent var 0.056811 S.E. of regression 0.055216 Akaike info criterion -2.789558 Sum squared resid 0.067073 Schwarz criterion -2.549588 Log likelihood 42.65904 F-statistic 1.380966 Durbin-Watson stat 1.980465 Prob(F-statistic) 0.272917 Kết quả: Khơng cĩ HET ở mức α = 10%. Biên soạn : ThS. Hồng Thị Hồng Vân 56
- Tập bài giảng mơn học: Kinh tế lượng Chương VII TƯƠNG QUAN CHUỖI (Auto Regression) 7.1. GIỚI THIỆU: Một trong những giả thiết quan trọng của mơ hình hồi quy tuyến tính ước lượng theo phương pháp OLS là các số hạng sai số ui khơng tương quan với nhau. Tuy nhiên, trong nhiều trường hợp thơng thường cĩ liên quan đến những dữ liệu thu thập theo thời gian, giả thuyết này cĩ thể sai. Cĩ nghĩa là số hạng sai số ui của một mẫu quan sát cụ thể nào đĩ cĩ quan hệ tuyến tính với một hay nhiều các số hạng sai số của các quan sát khác. Hiện tượng như vậy được gọi là hiện tượng tự tương quan của số hạng sai số (gọi tắt là tương quan chuỗi). Vậy: Cov(ui, uj) = 0 → Khơng cĩ hiện tượng tương quan chuỗi. Cov(ui, uj) ≠ 0 → Cĩ hiện tượng tương quan chuỗi. Phương trình tổng thể : Yt = β1 + β2X2t + β2X3t + + βKXKt +ut AR(p): tương quan chuỗi bậc p ut = α1ut-1 + α2ut-2 + + αput-p + νt 7.2. HẬU QUẢ: 7.2.1. Tác động lên tính chất của các ước lượng: Nếu mơ hình cĩ hiện tượng tương quan chuỗi (AR), thì các tính chất: khơng chệch và nhất quán khơng bị vi phạm nếu ta sử dụng OLS để ước lượng các hệ số hồi quy. ˆ Nghĩa là: E(βk ) = βk Tính chất nhất quán sẽ khơng cịn nếu các biến phụ thuộc cĩ hiệu ứng trễ được gộp vào xem như các biến giải thích. 7.2.2. Tác Động Lên Các Kiểm Định Giả Thuyết Khi cĩ hiện tượng tương quan chuỗi thì các sai số chuẩn ước lượng sẽ khác các sai số thực, và do đĩ sẽ là ước lượng khơng chính xác. Điều này làm cho là các trị thống kê t và F được ước lượng khơng đúng. Vì vậy, các kiểm định t và F khơng cịn hợp lệ, các kiểm định giả thuyết khơng cịn giá trị nữa. Biên soạn : ThS. Hồng Thị Hồng Vân 57
- Tập bài giảng mơn học: Kinh tế lượng 7.2.3. Tác Động Lên Việc Dự Báo Do các ước lượng OLS vẫn khơng chệch, nên các dự báo dựa trên những giá trị ước lượng này cũng sẽ khơng thiên lệch tuy nhiên dự báo sẽ khơng hiệu quả do sai số lớn. 7.3. NGUYÊN NHÂN XẢY RA HIỆN TƯỢNG AR - Do bản chất của các mối quan hệ kinh tế. - Do kỹ thuật thu thập dữ liệu, kỹ thuật đo lường, dạng hàm số của mơ hình. - Do con người học được hành vi trong quá khứ. 7.4. NHẬN DẠNG HIỆN TƯỢNG HET 7.4.1. Bằng trực gíac và kinh nghiệm: Làm việc thường xuyên với số liệu, ta sẽ cĩ một “cảm giác” tốt hơn với số liệu, thơng thường với dữ liệu thời gian (time-series data), rất cĩ khả năng ta cĩ hiện tượng tương quan chuỗi. 7.4.2. Phân tích bằng Biểu đồ (Graphical analysis) Để phát hiện AR người ta thường dùng các đồ thị phân tán giữa: (Xt, Yt) (Xt, ut) hoặc ˆ (ut, ut-1) và thay thế Xt bằng Yt với mơ hình đa biến. Ví dụ: DATA6-6 cĩ dữ liệu hàng năm về dân số nơng trại theo phần trăm tổng dân số tại Mỹ FARMPOP từ năm 1948 đến 1991 Mơ hình hồi quy: FARMPOP = β1 + β2TIME + u, trong đĩ TIME là biến xu thế. Đồ thị giữa (Xi, Yi) Đồ thị giữa (Xi, ui) Hình 7.1: Đồ thị nhận biết hiện tượng AR Biên soạn : ThS. Hồng Thị Hồng Vân 58
- Tập bài giảng mơn học: Kinh tế lượng Theo đồ thị ta thấy các số hạng phần dư cĩ mối quan hệ với nhau theo thời gian → cĩ dấu hiệu của hiện tượng tương quan chuỗi. Bằng trực giác, kinh nghiệm hay đồ thị chỉ cho ta biết dấu hiệu để nhận dạng hiện tượng AR. Để cĩ kết luận chính thức về hiện tượng AR ta phải thực hiện các kiểm định phù hợp. 7.4.3. Kiểm định tương quan chuỗi bậc nhất (Durbin - Watson): Kiểm định Durbin – Watson chỉ nhận dạng được hiện tượng tương quan chuỗi bậc 1 Đơi khi Kiểm định Durbin – Watson khơng cho kết luận. Phương trình hồi quy tổng thể : Yt = β1 + β2X2t + β2X3t + + βKXKt +ut AR(1): ut = ρ1ut-1 + νt Các bước kiểm định: Bước 1: Thực hiện hồi quy phụ: ut = ρ1ut-1 + νt -1 ≤ ρ1 ≤ 1 Bước 2: Phát biểu giả thiết: H0: ρ1 = 0 Khơng cĩ hiện tượng AR(1). H1: ρ1 ≠ 0 Cĩ hiện tượng AR(1). Bước 3: Tính tốn thơng kê Durbin-Watson n n ˆ ˆ 2 ˆ ˆ ∑()u t − u t−1 ∑ u t u t−1 t=2 ˆ t=2 DW = n Ta cĩ: ρ ≈ n ˆ 2 ˆ 2 ∑ u t ∑ u t t=1 t=1 Do đĩ: DW ≈ 2(1 - ρˆ ) Bước 4: Tra bảng tìm giá trị : dU và dL. Xác định xem DW nằm trong khoảng nào để cĩ các kết luận phù hợp. Tự tương quan dương Khơng Khơng Tự tương quan âm H1: ρ > 0 kết H0: ρ = 0kết H1: ρ < 0 luậnluận 0 dU dL 2 4 - dL 4 - dU 4 Lưu ý: Trong thực hành bằng EVIEW, trị thơng kê Durbin-Watson DW được tính tốn sẵn (thể hiện trên bảng kết quả). Biên soạn : ThS. Hồng Thị Hồng Vân 59
- Tập bài giảng mơn học: Kinh tế lượng Ví dụ: Theo ví dụ dân số nơng trại theo phần trăm tổng dân số tại Mỹ FARMPOP từ năm 1948 đến 1991. Chọn α = 5%. Dependent Variable: FARMPOP Method: Least Squares Date: 01/18/06 Time: 11:17 Sample: 1948 1991 Included observations: 44 Variable Coefficient Std. Error t-Statistic Prob. C 13.77727 0.436669 31.55083 0.0000 TIME -0.324848 0.016902 -19.22003 0.0000 R-squared 0.897912 Mean dependent var 6.468182 Adjusted R-squared 0.895481 S.D. dependent var 4.403581 S.E. of regression 1.423649 Akaike info criterion 3.588713 Sum squared resid 85.12467 Schwarz criterion 3.669813 Log likelihood -76.95169 F-statistic 369.4094 Durbin-Watson stat 0.055649 Prob(F-statistic) 0.000000 Hình 7.2: Mơ hình hồi quy cơ bản. Mơ hình ước lượng: FARMPOPt = 13.77727 - 0.324848TIMEt + uˆ t Ta cĩ: DW = 0.055649. Số quan sát n = 44 và k’ = 1, dL = 1,47 và dU = 1,56. Vì DW < dL ⇒ Bác bỏ H0 tại mức α = 5% Kết luận: Cĩ tương quan chuỗi dương trong các phần dư cĩ ý nghĩa tại α = 5%. 7.4.4. Kiểm định nhân tử Lagrang : Kiểm định LM trong việc nhận dạng tương quan chuỗi khơng chỉ với bậc nhất mà cũng cho cả các bậc cao hơn: Ta cĩ : (R) : Yt = β1 + β2X2t + β2X3t + + βKXKt +ut (U) : Yt = β1 + β2X2t + β2X3t + + βKXKt + ρ1ut-1 + + ρput-p + νt Nếu chọn mơ hình (U) : nghĩa là mơ hình cĩ AR(p). Các bước kiểm định : Bước 1: Chạy mơ hình hồi quy (R). Bước 2: Phát biểu giả thuyết kiểm định : H0: ρ1 = ρ2 = = ρp = 0 Khơng cĩ hiện tượng AR(p). H1: Cĩ ít nhất 1 số ρj ≠ 0 (j = 1,p ) Cĩ hiện tượng AR(p). Biên soạn : ThS. Hồng Thị Hồng Vân 60
- Tập bài giảng mơn học: Kinh tế lượng 2 Bước 3: Tính χtt = (n – p)R hqp 2 2 Tra bảng χ * = χ p,α 2 Nếu:χtt > χ * (hay p-value <α) → Bác bỏ Ho → Cĩ AR(1) Ví dụ: Theo ví dụ dân số nơng trại theo phần trăm tổng dân số tại Mỹ FARMPOP từ năm 1948 đến 1991. Chọn α = 5%. Sau khi chạy mơ hình (R) : FARMPOPt = 13.77727 - 0.324848TIMEt + uˆ t Ta tiến hành thực hiện kiểm định AR(1) như sau : Breusch-Godfrey Serial Correlation LM Test: F-statistic 209.9702 Probability 0.000000 Obs*R-squared 36.81190 Probability 0.000000 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 01/18/06 Time: 11:34 Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob. C -0.111732 0.178801 -0.624895 0.5355 TIME 0.007287 0.006932 1.051126 0.2994 RESID(-1) 0.951049 0.065633 14.49035 0.0000 R-squared 0.836634 Mean dependent var 1.03E-15 Adjusted R-squared 0.828665 S.D. dependent var 1.406998 S.E. of regression 0.582394 Akaike info criterion 1.822406 Sum squared resid 13.90648 Schwarz criterion 1.944055 Log likelihood -37.09293 F-statistic 104.9851 Durbin-Watson stat 1.058810 Prob(F-statistic) 0.000000 Hình 7.3: Kiểm định LM để nhận dạng AR(1). Giả thuyết kiểm định: H0: ρ1 = 0 Khơng cĩ hiện tượng AR(1). H1: ρ1 ≠ 0 Cĩ hiện tượng AR(1). Ta cĩ : p-value ≈ 0 < α → Bác bỏ Ho (Hay cĩ tương quan chuỗi bậc nhất) Lưu ý: Do giả thuyết H1 của kiểm định là chỉ cần tồn tại ít nhất một số ρj ≠ 0, nên nếu mơ hình cĩ AR(1) thì các kiểm định bậc cao hơn sẽ luơn chọn H1 và như vậy ta sẽ khơng xác định được bậc của AR. Do đĩ, trong thực hành ta nên thực hiện kiểm định kiểm tra AR(1), nếu cĩ AR(1) thì khắc phục AR(1) và quay trở lại bước kiểm định nhận dạng. Biên soạn : ThS. Hồng Thị Hồng Vân 61
- Tập bài giảng mơn học: Kinh tế lượng 7.4.5. Kiểm định Correlogram: Một phương pháp khác giúp nhận dạng AR là kiểm định Q. Để thực hiện kiểm định này chúng ta cần xem xét một khái niệm “tự tương quan” (AutoCorrellation - AC) ACk = ρ(ut, ut-k): Hệ số tương quan giữa ut và ut-k Phát biểu giả thuyết kiểm định : H0: AC1 = AC2 = = ACp = 0 Khơng cĩ hiện tượng AR(p). H1: Cĩ ít nhất 1 số ACj ≠ 0 (j = 1,p ) Cĩ hiện tượng AR(p). Trị số thống kê kiểm định (Box-Lung): ∑ QBL = n 2 Nếu:QBL > χ α,df (hay p-value <α) → Bác bỏ Ho → Cĩ AR(p) Ví dụ: Theo ví dụ dân số nơng trại theo phần trăm tổng dân số tại Mỹ FARMPOP từ năm 1948 đến 1991. Chọn α = 5%. Sau khi chạy mơ hình cơ bản (hình 7.2), ta thực hiện kiểm định AR(1) như sau : Hình 7.4: Kiểm định LM để nhận dạng AR(1). H0: ρ1 = 0 Khơng cĩ hiện tượng AR(1). H1: ρ1 ≠ 0 Cĩ hiện tượng AR(1). Ta cĩ : Q-stat = 36,426 hay p-value ≈ 0 <α → Bác bỏ Ho hay cĩ AR(1) Biên soạn : ThS. Hồng Thị Hồng Vân 62
- Tập bài giảng mơn học: Kinh tế lượng 7.5. BIỆN PHÁP KHẮC PHỤC 7.5.1. Thay đổi dạng hàm: Hiện tượng tương quan chuỗi cĩ thể xảy ra trong trường hợp nhận dạng sai dạng hàm của mơ hình, trong trường hợp này ta phải xây dựng lại mơ hình bằng một dạng hàm đúng. Ví dụ: Giả sử rằng đáng ra ta hồi qui Y theo X và X2. Nếu X tăng hoặc giảm cĩ hệ thống theo thời gian, thì hồi qui của Y chỉ theo X sẽ thể hiện sự tương quan chuỗi. Khơng cĩ thủ tục ước lượng nào cĩ thể hiệu chỉnh vấn đề mà nĩ thực sự do đặc trưng sai trong phần xác định hơn là trong số hạng sai số. Một giải pháp ở đây là thiết lập lại mơ hình cĩ tính đến số hạng bậc hai sao cho khơng cĩ tương quan chuỗi xuất hiện. Các giải pháp hay dùng trong trường hợp này: - Tìm các dạng phù hợp khác. - Đưa biến độ trễ vào mơ hình. - Lập mơ hình các sai phân bậc nhất. 7.5.2. Thủ tục ước lượng: Ước lượng phương trình cơ bản bằng OLS và tính tốn phần dư của nĩ uˆ t . Ước lượng hệ số tương quan chuỗi bậc nhất (cịn gọi là ρˆ ). Biến đổi các biến như sau: * * Yt = Yt – ρˆ Yt–1 , X 2t = X2t – ρˆ X2(t–1) .v.v. Lưu ý rằng các biến cĩ dấu (*) được xác định chỉ với t nhận giá trị từ 2 đến n vì cĩ t –1 số hạng xuất hiện. * * * Hồi quy Yt theo X 2t , X 3t , và xác định các tham số ước lượng này. Sử dụng những tham số ước lượng vừa tính tốn thay vào các giá trị tham số ước lượng trong phương trình cơ bản ta sẽ tính tốn được được một tập mới các giá trị ước lượng uˆ t mới. Sau đĩ, quay tính lặp bước 2 với những giá trị mới này cho đến khi cĩ thể áp dụng được quy tắc dừng sau. Quy tắc dừng: Thủ tục tính lặp trên đây cĩ thể dừng lại khi hiệu số giá trị ước lượng của ρ từ hai kết quả liên tiếp tính được khơng lớn hơn giá trị chọn trước nào đĩ, như 0,001 chẳng hạn. Lưu ý: Trong EVIEW, các bước lặp đã được thực hiện và ra kết quả sau cùng. Biên soạn : ThS. Hồng Thị Hồng Vân 63
- Tập bài giảng mơn học: Kinh tế lượng Ví dụ: Theo ví dụ dân số nơng trại theo phần trăm tổng dân số tại Mỹ FARMPOP từ năm 1948 đến 1991. Chọn α = 5%. Sau khi dùng các kiểm định nhận dạng ta kết luận cĩ hiện tượng AR(1) trong mơ hình. Để khắc phục hiện tượng này, ta tiến hành thủ tục ước lượng thêm AR(1) vào mơ hình cơ bản (mơ hình R) để được mơ hình U như sau: Dependent Variable: FARMPOP Method: Least Squares Date: 01/19/06 Time: 15:23 Sample(adjusted): 1949 1991 Included observations: 43 after adjusting endpoints Convergence achieved after 4 iterations Variable Coefficient Std. Error t-Statistic Prob. C -5.110588 17.86673 -0.286039 0.7763 TIME 0.087428 0.267420 0.326933 0.7454 AR(1) 0.956023 0.027084 35.29805 0.0000 R-squared 0.996830 Mean dependent var 6.232558 Adjusted R-squared 0.996672 S.D. dependent var 4.165603 S.E. of regression 0.240311 Akaike info criterion 0.053448 Sum squared resid 2.309974 Schwarz criterion 0.176323 Log likelihood 1.850863 F-statistic 6289.979 Durbin-Watson stat 2.290753 Prob(F-statistic) 0.000000 Inverted AR Roots .96 Hình 7.5: Thực hiện thủ tục ước lượng để khắc phục AR(1). Mơ hình ước lượng: FARMPOPt = -5.110588 + 0.087428TIMEt - 0.956023 uˆ t−1 + νˆ t Sau đĩ ta lại tiến hành kiểm định nhận dạng AR cho mơ hình hình 7.5 như sau: Breusch-Godfrey Serial Correlation LM Test: F-statistic 1.545178 Probability 0.221270 Obs*R-squared 1.638732 Probability 0.200500 Test Equation: Dependent Variable: RESID Method: Least Squares Date: 01/19/06 Time: 15:25 Presample missing value lagged residuals set to zero. Variable Coefficient Std. Error t-Statistic Prob. C -3.500721 17.96828 -0.194828 0.8465 TIME 0.051139 0.268783 0.190261 0.8501 AR(1) 0.005438 0.027255 0.199513 0.8429 RESID(-1) -0.197927 0.159227 -1.243052 0.2213 R-squared 0.038110 Mean dependent var -9.32E-14 Adjusted R-squared -0.035882 S.D. dependent var 0.234519 S.E. of regression 0.238690 Akaike info criterion 0.061105 Sum squared resid 2.221941 Schwarz criterion 0.224937 Log likelihood 2.686250 F-statistic 0.515059 Durbin-Watson stat 2.028883 Prob(F-statistic) 0.674328 Biên soạn : ThS. Hồng Thị Hồng Vân 64