Luận văn Giúp học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi casio
Bạn đang xem 20 trang mẫu của tài liệu "Luận văn Giúp học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi casio", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- luan_van_giup_hoc_sinh_tiep_can_luyen_thi_hoc_sinh_gioi_giai.pdf
Nội dung text: Luận văn Giúp học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi casio
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio LUẬN VĂN TỐT NGHIỆP Giúp Học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio lI- PHẦN MỞ ĐẦU I.1. Lí do chọn đề tài. Việc dạy và học toán có sự hỗ trợ của máy tính đã trở nên rất phổ biến trên toàn thế giới. Trong các tài liệu giáo khoa của các nước có nền giáo dục tiên tiến luôn có thêm chuyên mục sử dụng máy tính để giải toán. Ở nước ta, kể từ năm 2001, Bộ Giáo dục và Đào tạo ngoài việc đã tổ chức các kì thi học sinh giỏi cấp khu vực “Giải toán trên máy tính Casio” cho học sinh phổ thông còn cho phép tất cả thí sinh được sử dụng các loại máy tính CASIO fx-500A, CASIlO fx-500MS, CASIO fx-570MS trong các kì thi cấp quốc gia. Nhưng đối với một số trường trong huyện, nhiều năm vẫn chưa có học sinh tham gia hoặc có tham gia nhưng kết quả đạt được chưa cao, nguyên nhân do kiến thức về sử dụng máy tính bỏ túi còn mới mẻ nên bước đầu giáo viên còn bỡ ngỡ, gặp nhiều khó khăn trong việc nghiên cứu và tìm tòi tài liệu. Do đó mà nhiều giáo viên còn ngại khi được giao nhiệm vụ bồi dưỡng đội tuyển học sinh giỏi giải toán rên máy tính điện tử. Mặt khác các tài liệu để giáo viên tham khảo còn ít và chưa thực sự có tính hệ thống. Trong khi đó nhu cầu học hỏi của học sinh ngày càng cao, các em thích tìm hiểu ham học hỏi, khám phá những kiến thức mới lạ trên máy tính điện tử. Còn về phía giáo viên lại không được đào tạo cơ bản về nội dung này, hầu hết giáo viên tự tìm hiểu, nghiên cứu các kiến thức về máy tính điện tử. Máy tính điện tử giúp giáo viên và học sinh bổ sung nhiều kiến thức Toán học cơ bản, hiện đại và thiết thực. Nhờ khả năng xử lí dữ liệu phức tạp với tốc độ cao, máy tính điện tử cho phép thiết kế những bài tập toán gắn với thực tế hơn.Chính vì vậy tôi thấy việc giới thiệu sử dụng máy tính điện tử bỏ túi trong chương trình giáo dục phổ thông là một việc cần thiết và thích hợp trong hoàn cảnh kinh tế hiện nay và đưa ra một vài giải pháp : “Giúp Học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio”. I.2.Mục đích nghiên cứu Nâng cao chất lương giáo dục, đặc biệt là chất lượng bồi dưỡng đội tuyển học sinh giỏi giải toán trên máy tính bỏ túi Casio. Phát huy tính tích cực, chủ động sang tạo, năng lực tự học của học sinh, tạo điều kiện cho các em hứng thú học tập bộ môn. Nêu nên một số kinh nghiệm của bản thân về: “Giúp Học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio”. I.3. Thời gian – Địa điểm Thời gian: Năm học 2009 – 2010. Địa điểm: Trường THCS Thị trấn Đông Triều. I.4. Đóng góp mới về mặt lí luận. về mặt thực tiễn * Ý nghĩa lí luận: [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio + Kết quả vận dụng của giải pháp đóng góp một phần nhất định vào phát triển lí luận dạy học Toán nói riêng, các môn học khác nói chung thông qua giải các bài tập Toán bằng máy tính bỏ túi Casio. + Nâng cao hiểu biết và kĩ năng vận dụng của máy tính bỏ túi Casio vào giải Toán, Khẳng định được vai trò của máy tính Casio trong việc dạy, học giải toán. *Ý nghĩa thực tiễn: + Nâng cao năng lực chuyên môn của bản thân nhất là việc “Giúp Học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio”. Nâng cao chất lượng bộ môn của trường. + Rèn luyện cho học sinh kĩ năng sử dụng máy tính bỏ túi Casio vào giải toán từ đó thành lập và bồi dưỡng đội tuyển thi học sinh giỏi giải toán trên máy tính bỏ túi Casio. + Kích thích tư duy sáng tạo, tích cực tự giác của học sinh, phát huy được vai trò của máy tính bỏ túi Casio. II. PHẦN NỘI DUNG II.1. Chương I: TỔNG QUAN II.1. 1.Cơ sở lí luận Chúng ta đã biết rằng môn học giải toán trên máy tính cầm tay là môn học mới đối với học sinh THCS mà, vì vậy để học sinh tiếp cận và vận dụng được máy tính bỏ túi Casio vào giải Toán thì người thầy không phải cứ hướng dẫn học sinh làm bài tập theo kiểu dạy nhồi nhét, thụ động. Dạy như vậy thì học trò học đâu quên đó, làm bài tập nào biết bài tập đó, giải hết bài này đến bài khác, tốn rất nhiều công sức mà không đọng lại trong đầu học sinh điều gì đáng kể. Ngay cả những học sinh khá giỏi cũng vậy, mới chỉ đầu tư vào giải hết bài toán khó này đến bài toán khó khác mà vẫn chưa phát huy được tính tư duy sáng tạo, chưa có phương pháp làm bài. Trong khi đó từ một đơn vị kiến thức cơ bản nào đó của Toán học lại có một hệ thống bài tập rất đa dạng và phong phú, mỗi bài là một kiểu, một dạng mà lời giải thì không theo một khuôn mẫu nào cả. Do vậy mà học sinh lúng túng khi đứng trước một đề toán Casio, vì vậy mà số lượng và chất lượng của bộ môn giải toán trên máy tính bỏ túi Casio vẫn thấp, chưa đáp ứng được lòng mong mỏi của chúng ta. Vì vậy để nâng cao chất lượng bộ môn giải toán trên máy tính bỏ túi Casio, đặc biệt là chất lượng học sinh giỏi của bộ môn này, hơn ai hết người thầy đóng vai trò quan trọng, phải thực sự chuyên tâm tìm tòi, nghiên cứu, phân loại dạng toán và tìm ra phương pháp bấm máy nhanh, hợp lí nhất Đồng thời phải tích cực hóa hoạt động của học sinh nhằm hình thành cho học sinh tư duy tích cực, tính độc lập sáng tạo, qua đó nâng cao năng lực phát hiện và giải quyết vấn đề một cách nhanh chóng. Sau hai năm thực hiện hướng dẫn học sinh giải toán trên máy tính bỏ túi và bồi dưỡng đội tuyển học sinh giỏi cho bộ môn này, tôi xin đưa ra một số giải [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio pháp của bản thân về việc: “Giúp học sinh tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio”. II.1.2. Đặc điểm tình hình II.1.2.1. Thuận lợi Học sinh đa số là con em công nhân, nông dân nên có tính cần cù, chịu khó. Các em thấy ngay được sự hữu dụng khi vận dụng máy tính vào giải toán nói riêng và các môn học khác nói chung, vì vậy môn học dễ gây hứng thú học tập cho học sinh, kích thích các em tìm tòi và vận dụng máy tính vào giải toán. Được sự quan tâm giúp đỡ của Ban giám hiệu và tổ chuyên môn. II.1.2.2. Khó khăn Trình độ của học sinh không đồng đều, tính tự giác, khả năng tư duy còn hạn chế, một số học sinh chưa chăm học. Môn học này cần sự cần cù, việc tự học là rất quan trọng, song rất ít học sinh có tinh thần tự học, tự tìm hiểu thêm qua mạng. II.2. chương II: NỘI DUNG VẤN ĐỀ NGHIÊN CỨU II.2.1. Sơ lược về cách sử dụng máy II.2.1.1. Các phím chức năng trên máy II.2.1.1.1. Phím chức năng chung Phím Chức năng On Mở máy Shift off Tắt máy Di chuyển con trỏ đến vị trí dữ liệu 0; 1; 2 ; 9 Nhập các số từ 0; ;9 . Nhập dấu ngăn cách phần nguyên, phần phân của số TP + ; - ; x ; ÷ ; = Nhập các phép toán AC Xóa hết dữ liệu trên máy tính (không xóa trên bộ nhớ) DEL Xóa kí tự nhập (-) Nhập dấu trừ của số nguyên âm CLR Xóa màn hình II.2.1.1.2. Khối phím nhớ Phím Chức năng STO Gán, ghi váo ô nhớ RCL Gọi số ghi trong ô nhớ ABCD,,,, Các ô nhớ EFXYM,,,, M Cộng thêm vào ô nhớ M [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio M Trừ bớt từ ô nhớ II.2.1.1.3. Khối phím đặc biệt Phím Chức năng Shift Di chuyển sang kênh chữ vàng Alpha Di chuyển sang kênh chữ đỏ Mode Ấn định kiểu,trạng thái,loại hình tính,loại đơn vị đo () Mở, đóng ngoặc EXP Nhân với lũy thừa 10 với số mũ nguyên Nhập số pi o '" Nhập hoặc đọc độ, phút, giây, chuyển sang chế độ thập phân DRG Chuyển đổi giữa độ, Radian, grad nCr Tính tổ hợp chập r của n n! nCr n!( n r )! n Pr Tính chỉnh hợp chập r của n n! n Pr (n r )! II.2.1.1.4. Khối phím hàm Phím Chức năng sin 1 ,c os -1 , tan -1 Tính tỉ số lượng giác của một góc Tính góc khi biết tỉ số lượng giác 10x , e x Hàm mũ cơ số 10, cơ số e x2, x 3 Bình phương, lập phương của x ,,3 x Căn bậc hai, căn bậc 3, căn bậc x x-1 Nghịch đảo của x Mũ x! Tính giai thừa của x % Tính phần trăm ab/ c Nhập hoặc đọc phân số, hỗn số, đổi phân số, hỗn số ra số thập phân hoặc ngược lại d/ c Đổi hỗn số ra phân số và ngược lại n ENG Chuyển kết quả ra dạng a.10 với n giảm dần suuuu n ENG Chuyển kết quả ra dạng a.10 với n tăng RAN Nhập số ngẫu nhiên II.2.1.1.5. Khối phím thống kê [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Phím Chức năng DT Nhập dữ liệu xem kết quả S Sum Tính x2 tổng bình phương của các biến lượng x tổng các biến lượng n tổng tần số SV AR Tính: x giá trị trung bình cộng của các biến lượng n độ lệch tiêu chuẩn theo n n 1 độ lệch tiêu chuẩn theo n-1 CALC Tính giá trị của biểu thức tại các giá trị của biến II.2.1. 2Các thao tác sử dụng máy II.2.1.2.1. Thao tác chọn kiểu Phím Chức năng Mode 1 Kiểu Comp: Tính toán cơ bản thông thường Mode 2 Kiểu SD: Giải bài toán thống kê Mode Mode 1 Kiểu ENQ: Tìm ẩn số 1) Unknows? (số ẩn của hệ phương trình) + Ấn 2 vào chương trình giải hệ PT bậc nhất 2 ẩn + Ấn 3 vào chương trình giải hệ PT bậc nhất 3 ẩn 2) Degree (số bậc của PT) + Ấn 2 vào chương trình giải PT bậc t 2 + Ấn 3 vào chương trình giải PT bậc nhất 3 Mode Mode Mode 1 Kiểu Deg: Trạng thái đơn vị đo góc là độ Mode Mode Mode 2 Kiểu Rad: Trạng thái đơn vị đo góc là radian Mode Mode Mode 3 Kiểu Grad: Trạng thái đơn vị đo góc là grad Mode Mode Mode Mode 1 Kiểu Fix: Chọn chữ số thập phân từ 0 đến 9 Mode Mode Mode Mode 2 Kiểu Sci: Chọn chữ số có nghĩa ghi ở dạng a.10n (0; 1; ;9) Mode Mode Mode Mode 3 Kiểu Norm: Ấn 1 hoặc 2 thay đổi dạng kết quả thông thường hay khoa học. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio b/c Mode Mode Mode Mode Mode 1 Kiểu a ; d/c: Hiện kết quả dạng phân số hay hỗn số Mode Mode Mode Mode Mode 1 > Kiểu Dot, Comma: chọn dấu ngăn cách phần nguyên, phần thập phân; ngăn cách phân định nhóm 3 chữ số. II.2.1.2.2. Thao tác nhập xóa biểu thức - Màn hình tối đa 79 kí tự, không quá 36 cặp dấu ngoặc. - Viết biểu thức trên giấy như bấm phím hiện trên màn hình. - Thứ tự thực hiện phép tính: { [ ( ) ] } lũy thừa Phép toán trong căn nhân nhân chia cộng trừ. II.2.1.2.3. Nhập các biểu thức - Biểu thức dưới dấu căn thì nhập hàm căn trước, biểu thức dưới dấu căn sau - Lũy thừa: Cơ số nhập trước rồi đến kí hiệu lũy thừa. - Đối với các hàm: x2; x3; x-1; o '" ; nhập giá trị đối số trước rồi phím hàm. - Đối với các hàm ; 3 ; cx; 10x; sin; cos; tg; sin-1; cos-1; tg-1 nhập hàm trước rồi nhập các giá trị đối số. - Các hằng số: π; e, Ran, ≠ và các biến nhớ sử dụng trực tiếp. - Với hàm x nhập chỉ số x trước rồi hàm rồi biểu thức. VD: 4 20 4 x 20 n - Có thể nhập: x an a x VD: Tính 4 42 Ấn: 4 4 x2 = 2 1 Hoặc 4 42 = 44 = 4 2 =>Ấn: 4 ( 1 : 2 ) = II.2.1.2.4. Thao tác xóa, sửa biểu thức - Dùng phím để di chuyển con trỏ đến chỗ cần chỉnh. - Ấn Del để xóa kí tự dạng nhấp nháy (có con trỏ). - Ấn Shift Ins con trỏ trở thành (trạng thái chèn) và chèn thêm trước kí tự đang nhấp nháy. Khi ấn Del , kí tự trước con trỏ bị xóa. - Ấn Shift Ins lần nữa hoặc = ta được trạng thái bình thường (thoát trạng thái chèn). - Hiện lại biểu thức tính: + Sau mỗi lần tính toán máy lưu biểu thức và kết quả vào bộ nhớ. Ấn V màn hình cũ hiện lại, ấn V , màn hình cũ trước hiện lại. + Khi màn hình cũ hiện lại ta dùng > hoặc , con trỏ hiện ở dòng biểu thức. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio + Ấn AC màn hình không bị xóa trong bộ nhớ. + Bộ nhớ màn hình bị xóa khi: . Ấn On . Lập lại Mode và cài đặt ban đầu ( Shift Clr 2 = ). . Đổi Mode. . Tắt máy. - Nối kết nhiều biểu thức Dùng dấu “:” ( Anpha : ) để nối hai biểu thức tính. VD: Tính 2 + 3 và lấy kết quả nhân 4. Ấn: 2 + 3 Ans x 4 = = II.2.1.2.5.Thao tác với phím nhớ. II.2.1.2.5.1. Gán giá trị vào biểu thức. - Nhập giá trị. - Ấn: Shift STO biến cần gán. VD: 5 Shift STO A - Cách gọi giá trị từ biến nhớ + Cách 1: RCL + Biến nhớ + Cách 2: RCL + Biến nhớ - Có thể sử dụng biến nhớ để tính toán. VD: Tính giá trị biểu thức x5 + 3x4 + 2x2 +3 với x =35. Thực hành: Gán 35 vào biến X. Ấn 35 Shift STO X Anpha X 5 + 3 x Anpha X 4 + 2 x Anpha X 2 + 3 II.2.1.2.5.2. Xóa biến nhớ 0 Shift STO biến nhớ. II.2.1.2.5.3. Mỗi khi ấn = thì giá trị vừa nhập hay kết quả của biểu thức được tự động gán vào phím Ans - Kết quả sau “=” có thể sử dụng trong phép tính kế tiếp. - Dùng trong các hàm x2, x3, x-1,x!, +,-, [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio II.2. 2. Lí thuyết và các dạng bài tập cơ bản II.2.2.1. Các phép toán trong tập hợp số tự nhiên II.2.2.1.1. Lí thuyết *Phép cộng và phép nhân - Ghi y hệt các biểu thức tính vào màn hình và ấn sẽ được kết quả. - Máy chỉ đọc được một số có 10 chữ số, nếu ghi dài hơn nữa, máy không hiểu. - Dấu nhân liền trước dấu ngoặc có thể bỏ qua. - Dấu ngoặc cuối cùng cũng có thể khỏi ấn. *Phép trừ và phép chia - Ghi y hệt các biểu thức tính vào màn hình và ấn sẽ được kết quả. - Phép nhân tắt ưu tiên hơn phép nhân thường, do đó phép nhân tắt ưu tiên hơn phép chia. II.2.2.1.2. Các dạng bài tập và cách giải II.2.2.1.2.1. Tìm kết quả của phép nhân có kết quả quá 10 chữ số Bài 1: Tính kết quả đúng của các tích sau: a) M = 2222255555 . 2222266666. b) N = 20032003 . 20042004. Giải: a) Đặt A = 22222, B = 55555, C = 666666. Ta có M = (A.105 + B)(A.105 + C) = A2.1010 + AB.105 + AC.105 + BC Tính trên máy: A2 = 493817284 ; AB = 1234543210 ; AC = 1481451852 ; BC = 3703629630 Tính trên giấy: A2.1010 4 9 3 8 1 7 2 8 4 0 0 0 0 0 0 0 0 0 0 AB.105 1 2 3 4 5 4 3 2 1 0 0 0 0 0 0 AC.105 1 4 8 1 4 5 1 8 5 2 0 0 0 0 0 BC 3 7 0 3 6 2 9 6 3 0 M 4 9 3 8 4 4 4 4 4 3 2 0 9 8 2 9 6 3 0 b) Đặt X = 2003, Y = 2004. Ta có: N = (X.104 + X) (Y.104 + Y) = XY.108 + 2XY.104 + XY Tính XY, 2XY trên máy, rồi tính N trên giấy như câu a) Kết quả: M = 4938444443209829630. N = 401481484254012. Bài 2: Tính chính xác tổng S = 1.1! + 2.2! + 3.3! + 4.4! + + 16.16!. Giải: [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Vì n . n! = (n + 1 – 1).n! = (n + 1)! – n! nên: S = 1.1! + 2.2! + 3.3! + 4.4! + + 16.16! = (2! – 1!) + (3! – 2!) + + (17! – 16!) S = 17! – 1!. Không thể tính 17 bằng máy tính vì 17! Là một số có nhiều hơn 10 chữ số (tràn màn hình). Nên ta tính theo cách sau: Ta biểu diễn S dưới dạng : a.10n + b với a, b phù hợp để khi thực hiện phép tính, máy không bị tràn, cho kết quả chính xác. Ta có : 17! = 13! . 14 . 15 . 16 . 17 = 6227020800 . 57120 Lại có: 13! = 6227020800 = 6227 . 106 + 208 . 102 nên S = (6227 . 106 + 208 . 102) . 5712 . 10 – 1 = 35568624 . 107 + 1188096 . 103 – 1 = 355687428096000 – 1 = 355687428095999. Bài tập tương tự: Tính chính xác các phép tính sau: a) A = 20!; 19! b) B = 5567866 . 6667766 c) C = 20092009 . 20102010 d) 14584713 e) 212220032 II.2.2.1.2.2. Tìm số dư của phép chia *) Khi đề cho số bé hơn 10 chữ số: Số bị chia = số chia . thương + số dư (a = bq + r) (0 < r < b) Suy ra r = a – b . q Ví dụ : Tìm số dư trong các phép chia sau: 1) 9124565217 cho 123456 2) 987896854 cho 698521 *) Khi đề cho số lớn hơn 10 chữ số: Phương pháp: Tìm số dư của A khi chia cho B ( A là số có nhiều hơn 10 chữ số) - Cắt ra thành 2 nhóm , nhóm đầu có chín chữ số (kể từ bên trái). Tìm số dư phần đầu khi chia cho B. - Viết liên tiếp sau số dư phần còn lại (tối đa đủ 9 chữ số) rồi tìm số dư lần hai. Nếu còn nữa tính liên tiếp như vậy. Ví dụ: Tìm số dư của phép chia 2345678901234 cho 4567. Ta tìm số dư của phép chia 234567890 cho 4567: Được kết quả số dư là : 2203 Tìm tiếp số dư của phép chia 22031234 cho 4567. Kết quả số dư cuối cùng là 26. Bài tập: Tìm số dư của các phép chia: a) 97639875 cho 8604325 b) 903566893265 cho 38769. c) 1234567890987654321 : 123456 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio *) Dùng kiến thức về đồng dư để tìm số dư. Phép đồng dư: + Định nghĩa: Nếu hai số nguyên a và b chia cho c (c khác 0) có cùng số dư ta nói a đồng dư với b theo modun c ký hiệu a b(mod c ) + Một số tính chất: Với mọi a, b, c thuộc Z+ a a(mod m ) a b(mod m ) b a (mod m ) a b(mod m ); b c (mod m ) a c (mod m ) ab(mod mcd ); (mod macbd ) (mod m ) ab(mod mcd ); (mod m ) acbd (mod m ) a b(mod m ) an b n (mod m ) Ví dụ 1: Tìm số dư của phép chia 126 cho 19 Giải: 122 144 11(mod19) 3 126 12 2 11 3 1(mod19) Vậy số dư của phép chia 126 cho 19 là 1 Ví dụ 2: Tìm số dư của phép chia 2004376 cho 1975 Giải: Biết 376 = 62 . 6 + 4 Ta có: 20042 841(mod1975) 20044 841 2 231(mod1975) 200412 231 3 416(mod1975) 200448 416 4 536(mod1975) Vậy 200460 416.536 1776(mod1975) 200462 1776.841 516(mod1975) 200462.3 513 3 1171(mod1975) 200462.6 1171 2 591(mod1975) 200462.6 4 591.231 246(mod1975) Kết quả: Số dư của phép chia 2004376 cho 1975 là 246 Bài tập tương tự: Tìm số dư của phép chia : a) 158 cho 29 b) 2514 cho 63 c) 201038 cho 2001. d) 20099 cho 2007 e) 715 cho 2005 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio II.2.2.1.2.3. Tìm chữ số hang đơn vị, hàng chục, hàng trăm của một lũy thừa. Bài 1: Tìm chữ số hàng đơn vị của số 172002 172 9(mod10) 1000 172 17 2000 9 1000 (mod10) Giải: 92 1(mod10) 91000 1(mod10) 172000 1(mod10) Vậy 172000 .17 2 1.9(mod10) . Chữ số tận cùng của 172002 là 9 Bài 2: Tìm chữ số hàng chục, hàng trăm của số 232005. Giải + Tìm chữ số hàng chục của số 232005 231 23(mod100) 232 29(mod100) 233 67(mod100) 234 41(mod100) Do đó: 5 2320 23 4 41 5 01(mod100) 232000 01 100 01(mod100) 232005 23 1 .23 4 .23 2000 23.41.01 43(mod100) Vậy chữ số hàng chục của số 232005 là 4 (hai chữ số tận cùng của số 232005 là 43) + Tìm chữ số hàng trăm của số 232005 231 023(mod1000) 234 841(mod1000) 235 343(mod1000) 2320 343 4 201(mod1000) 232000 201 100 (mod1000) 2015 001(mod1000) 201100 001(mod1000) 232000 001(mod1000) 232005 23 1 .23 4 .23 2000 023.841.001 343(mod1000) Vậy chữ số hàng trăm của số 232005 là số 3 (ba chữ số tận cùng của số 232005 là số 343) Bài tập vận dụng: 1.Tìm chữ số cuối của: 72010; 354; 2713; 4931. 2.Tìm chữ số hang chục của: 252009; 372002; 192001. 3.Tìm hai chữ số cuối của: 22001 + 22002 + 22003 + 22005. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio II.2.2.1.2.4. Tìm BCNN, UCLN II.2.2.1.2.4.1. Cách làm A a Máy tính cài sẵn chương trình rút gọn phân số thành phân số tối giản B b Ta áp dụng chương trình này để tìm UCLN, BCNN như sau: + UCLN (A; B) = A : a + BCNN (A; B) = A . b II.2.2.1.2.4.2. Ví dụ Ví dụ 1: Tìm UCLN và BCNN của 2419580247 và 3802197531 HD: Ghi vào màn hình : 2419580247 và ấn =, màn hình hiện 7 3802197531 11 UCLN: 2419580247 : 7 = 345654321 BCNN: 2419580247 . 11 = 2.661538272 . 1010 (tràn màn hình) Cách tính đúng: Đưa con trỏ lên dòng biểu thức xoá số 2 để chỉ còn 419580247 . 11 Kết quả : BCNN: 4615382717 + 2.109 . 11 = 26615382717 Ví dụ 2: Tìm UCLN của 40096920 ; 9474372 và 51135438 Giải: Ấn 9474372 40096920 = ta được : 6987 29570. UCLN của 9474372 và 40096920 là 9474372 : 6987 = 1356. Ta đã biết UCLN(a; b; c) = UCLN(UCLN(a ; b); c) Do đó chỉ cần tìm UCLN(1356 ; 51135438). Thực hiện như trên ta tìm được: UCLN của 40096920 ; 9474372 và 51135438 là : 678 Bài tập áp dụng: Cho 3 số 1939938; 68102034; 510510. a) Hãy tìm UCLN của 1939938; 68102034. b) Hãy tìm BCNN của 68102034; 510510. c) Gọi B là BCNN của 1939938 và 68102034. Tính giá trị đúng của B2. II.2.2.1.2.5. Tìm số tự nhiên thỏa mãn điều kiện bài toán VD1 : Tìm số tự nhiên a biết 17089a 2 chia hết cho 109 Thực hành: a {0; 1; 2; ;9} 1708902 SIHFT STO A alpha A ÷109alpha : alpha A alpha = alpha +10 = Ấn = liên tiếp để kiểm tra VD2: Tìm số tự nhiên lớn nhất có dạng 1x2y3z4 chia hết cho 13 Thực hành: Số lớn nhất khi x, y, z = 9 1929394 SIHFT STO A alpha A ÷13alpha : alpha A alpha = alpha 10 = Ấn = liên tiếp để kiểm tra KQ: 1929304 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio VD3: Tìm số tự nhiên n nhỏ nhất sao cho khi lập phương số đó ta được số tự nhiên có 3 chữ số cuối đều là chữ số 7 và 3 chữ số đầu cũng đều là chữ số 7: n3 777 777 . Nêu sơ lược cách giải. 3 Giải: Hàng đơn vị chỉ có 33 27 có chữ số cuối là 7. Với cac số a3 chỉ có 533 14877 có 2 chữ số cuối đều là 7. 3 3 Với các chữ số a53 chỉ có 753 có 3 chữ số cuối đều là 7. Ta có: 3 777000 91.xxxx ; 3 7770000 198.xxxx , 3 777 105 426,xxx ; 3777 106 919,xxx ; 3 777 10 7 1980, xxx ; 3 777 108 4267,xxx ; Như vậy, để các số lập phương của nó có 3 số đuôi là chữ số 7 phải bắt đầu bởi các số: 91; 198; 426; 91x; 198x; 426x; (x = 0, 1, 2, , 9) Thử các số: 917533 77243 ; 198753 3 785129 ; 426753 3 77719455 Vậy số cần tìm là: n = 426753 và 4267533 77719455348459777 . Bài tập áp dụng: 1.Tìm các số lớn nhất và nhỏ nhất trong các số tự nhiên có dạng 1x2y3z4 chia hết cho 7 2.Biết số có dạng N 1235679 chia hết cho 24. Tìm tất cả các số N. 3. Số chính phương có dạng P 17712ab81 . Tìm các chữ số a, b biết rằng a +b = 13. II.2.2.1.2.6. Số nguyên tố II.2.2.1.2.6.1. Lí thuyết Để kết luận số a là số nguyên tố (a > 1), chỉ cần chứng tỏ nó không chia hết cho mọi số nguyên tố mà bình phương không vượt quá a. II.2.2.1.2.6.2. Ví dụ VD1: Số 647 có là số nguyên tố không Thực hành: 647 SIHFT STO A ÷2 = alpha ÷3 = ÷29 = 647 là số nguyên tố. Hoặc 647 ÷2 = Quay lại dòng biểu thức sửa 2 thành 3 = Tiếp tục như vậy cho đến số 29. VD2: Tìm các ước nguyên tố của [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio A = 17513 + 19573 + 23693 Giải: Ghi vào màn hình 1751 ab/c 1957 = Chỉnh lại màn hình: 1751 17 = Kết quả: ƯCLN(1751;1957) = 103 (là số nguyên tố). Thử lại: 2369 M 103 A =1033 (17 3 19 3 23 3 ) Tính tiếp: 173 19 3 23 3 23939 Chia 23939 cho các số nguyên tố được: 23939= 37 x 647 Kết quả A có các ước nguyên tố là 37; 103; 647. Bài tập áp dụng: 1. Tìm các ước nguyên tố của M = 18975 + 29815 + 35235 2. Số 211 – 1 là số nguyên tố hay hợp số. II.2.2.2. Liên phân số, phân số-số thập phân II.2.2.2.1. Liên phân số II.2.2.2.1. 1.Lí thuyết Liên phân số (phân số liên tục) là một công cụ toán học hữu hiệu được các nhà toán học sử dụng để giải nhiều bài toán khó. II.2.2.2.1.2 Cách làm Cho a, b (a>b)là hai số tự nhiên. Dùng thuật toán Ơclit chia a cho b, phân a ab 1 số có thể viết dưới dạng: a 0 a b b0 b 0 b b0 Vì b0 là phần dư của a khi chia cho b nên b > b0. Lại tiếp tục biểu diễn bb 1 phân số a 1 a 1 1 b b0 b 0 0 b1 Cứ tiếp tục quá trình này sẽ kết thúc sau n bước và ta được: ab 1 a 0 a . Cách biểu diễn này gọi là cách biểu diễn số hữu 0 0 1 b b a 1 1 an 2 an tỉ dưới dạng liên phân số. Mỗi số hữu tỉ có một biểu diễn duy nhất dưới dạng liên phân số, nó được viết gọn a0 ,a 1 , ,a n . Số vô tỉ có thể biểu diễn dưới dạng liên phân số vô hạn bằng cách xấp xỉ nó dưới dạng gần đúng bởi các số thập phân hữu hạn và biểu diễn các số thập phân hữu hạn này qua liên phân số. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 1 a Vấn đề đặt ra: hãy biểu diễn liên phân số a về dạng . 0 1 a b 1 1 an 1 an Dạng toán này được gọi là tính giá trị của liên phân số. Với sự trợ giúp của máy tính ta có thể tính một cách nhanh chóng dạng biểu diễn của liên phân số đó. Qui trình ấn máy b/ c b/ c b/ c Ấn lần lượt an 1 1a a n a n 2 1a Ans a 0 1a Ans II.2.2.2.1.3 Ví dụ VD1: 12 1 Cho A 30 . Viết lại A a 5 o 1 10 a 2003 1 1 an 1 an Viết kết quả theo thứ tự a0, a 1 , , an 1 , a n , , , Giải: 12 12.2003 24036 4001 1 Ta có A 30 3 30 30 1 31 5 20035 10 20035 20035 20035 2003 4001 1 31 . 30 5 4001 Tiếp tục tính như trên, cuối cùng ta được: 1 A 31 1 5 1 133 1 2 1 1 1 2 1 1 2 Viết kết quả theo ký hiệu liên phân số a0, a 1 , , an 1 , a n 31,5,133, 2,1,2,1,2 Bài tập vận dụng 1.Tính giá trị của các biểu thức sau và biểu diễn kết quả dưới dạng phân số: 31 10 2003 A ; B ; C 1 1 2 2 7 3 1 1 4 3 6 5 1 1 8 4 5 7 5 4 9 Đáp số: A) 2108/157 ; B) 1300/931 ; C) 783173/1315 Riêng câu C ta làm như sau: Khi tính đến 2003: 1315 . Nếu tiếp tục nhấn x 2003 391 = thì được số thập phân vì vượt quá 10 chữ số. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Vì vậy ta làm như sau: 391 x 2003 = (kết quả 783173) vậy C = 783173/1315. 2. 1 1 a) Tính A 1 b) B 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 3 1 1 c) C 1 d) D 9 1 2 2 8 1 3 3 7 1 4 4 6 1 5 5 5 1 6 6 4 1 7 7 3 1 8 8 2 9 9 3. a) Viết quy trình tính: 3 1 A 17 12 5 1 23 1 1 1 3 12 1 17 7 2002 2003 b) Giá trị tìm được của A là bao nhiêu ? 2003 1 4. Biết 7 . Tìm các số a, b, c, d. 1 273 2 1 a 1 b 1 c d 5. Tìm giá trị của x, y. Viết dưới dạng phân số từ các phương trình sau: x x y y a) 4 ; b) 1 1 1 1 1 4 1 2 1 1 1 1 2 3 3 4 1 1 3 2 5 6 4 2 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 1 1 Hướng dẫn: Đặt A = , B = 1 1 1 4 1 1 2 3 1 1 3 2 4 2 4 Ta có 4 + Ax = Bx. Suy ra x . BA 844 12556 24 Kết quả x 8 . (Tương tự y = ) 1459 1459 29 6. Tìm x biết: 3 381978 3 8 382007 3 8 3 8 3 8 3 8 3 8 3 8 3 8 1 8 1 x Lập quy trình ấn liên tục trên fx – 570MS, 570MS. 381978 : 382007 = 0.999924085 Ấn tiếp phím x-1 x 3 – 8 và ấn 9 lần dấu =. Ta được: 1 Ans . Tiếp tục ấn Ans x-1 – 1 = 1 x 17457609083367 Kết quả : x = -1,11963298 hoặc 15592260478921 7. Thời gian trái đất quay một vòng quanh trái đất được viết dưới dạng liên phân số là: 1 365 . Dựa vào liên phân số này, người ta có thể tìm ra số 1 4 1 7 1 3 1 5 1 20 6 1 năm nhuận. Ví dụ dùng phân số 365 thì cứ 4 năm lại có một năm nhuận. 4 1 7 Còn nếu dùng liên phân số 365 365 thì cứ 29 năm (không phải là 28 1 4 29 7 năm) sẽ có 7 năm nhuận. 1) Hãy tính giá trị (dưới dạng phân số) của các liên phân số sau: [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 1 1 1 a) 365 ; b) 365 ; c) 365 1 1 1 4 4 4 1 1 1 7 7 7 1 1 3 3 3 1 5 5 20 2) Kết luận về số năm nhuận dựa theo các phân số vừa nhận được. II.2.2.2.2. Phân số- số thập phân II.2.2.2.2.1. Tìm chữ số lẻ thập phân VD1: Tìm chữ số lẻ thập phân thứ 105 của phép chia 17 : 13 Giải: Bước 1: + Thực hiện phép chia 17 : 13 = 1.307692308 (thực chất máy đã thực hiện phép tính rồi làm tròn và hiển thị kết quả trên màn hình) Ta lấy 7 chữ số đầu tiên ở hàng thập phân là: 3076923 + Lấy 1,3076923 . 13 = 16,9999999 17 - 16,9999999 = 0,0000001 Vậy 17 = 1,3076923 . 13 + 0.0000001 (tại sao không ghi cả số 08)??? Không lấy chữ số thập cuối cùng vì máy có thể đã làm tròn. Không lấy số không vì 17 = 1,30769230 . 13 + 0,0000001= 1,30769230 . 13 + 0,0000001 Bước 2: + lấy 1 : 13 = 0,07692307692 11 chữ số ở hàng thập phân tiếp theo là: 07692307692 Vậy ta đã tìm được 18 chữ số đầu tiên ở hàng thập phân sau dấu phẩy là: 307692307692307692 Vậy 17 : 13 = 1,(307692) Chu kỳ gồm 6 chữ số. Ta có 105 = 6.17 + 3 (105 3(mod 6) ) Vậy chự số thập phân thứ 105 sau dấu phẩy là chữ số thứ ba của chu kỳ. Đó chính là số 7 Ví dụ 2: Tìm chữ số thập phân thứ 132007 sau dấu phẩy trong phép chia 250000 cho 19 Giải: 250000 17 Ta có 13157 . Vậy chỉ cần tìm chữ số thập phân thứ 132007 sau dấu 19 19 phẩy trong phép chia 17 : 19 Bước 1: Ấn 17 : 19 = 0,8947368421. Ta được 9 chữ số đầu tiên sau dấu phẩy là 894736842 + Lấy 17 – 0, 894736842 * 19 = 2 . 10-9 Bước 2: Lấy 2 : 19 = 0,1052631579. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Chín số ở hàng thập phân tiếp theo là: 105263157 + Lấy 2 – 0,105263157 * 19 = 1,7 . 10-8 = 17 . 10-9 Bước 3: Lấy 17 : 19 = 0,8947368421. Chín số ở hàng thập phân tiếp theo là + Lấy 17 – 0,0894736842 * 19 = 2 . 10-9 Bước 4: Lấy 2 : 19 = 0,1052631579. Chín số ở hàng thập phân tiếp theo là: 105263157 Vậy 17 : 19 = 0, 894736842105263157894736842105263157 = 0,(894736842105263157) . Chu kỳ gồm 18 chữ số. 669 Ta có 133 1(mod18) 13 2007 13 3 1 669 (mod18) Kết quả số dư là 1, suy ra số cần tìm là sồ đứng ở vị trí đầu tiên trong chu kỳ gồm 18 chữ số thập phân. Kết quả : số 8 II.2.2.2.2.1.2. Tìm phân số sinh ra số thập phân tuần hoàn II.2.2.2.2.1.2.1. Cách làm - Mẫu số là các số 9 và các số 0 tiếp theo: + Số chữ số 9 bằng số chữ số trong cụm tuần hoàn. + Số chữ số 0 bằng số chữ số không tuần hoàn đứng sau dấu phẩy. - Tử số bằng số đã cho với cụm tuần hoàn đầu tiên không ghi dấu phẩy trừ cho phần không tuần hoàn không ghi dấu phẩy. II.2.2.2.2.1.2.2. Ví dụ VD1: Phân số nào sinh ra số thập phân tuần hoàn sau a) 0,123123123 b) 4,(35) c) 2,45736736 Giải: 123 a) 0,123123123 0.(123) 999 435 4 431 b) 4,(35) 99 99 245736 245 245491 c) 2,45736736 2,45(736) 99900 99900 Bài tập: 1.Tìm chữ số thập phân thứ 2007 sau dấu phẩy khi chia: a) 1 chia cho 49 b) 10 chia cho 23 2. Tìm phân số sinh ra số thập phân tuần hoàn 3,15(321). 3. Viết các số sau dưới dạng phân số tối giản a) 3124,142248 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio b) 5,(321). 4. a) Tính 2 2 2 A 0,20102010 0,020102010 0,0020102010 b) Tìm tất cả các ước nguyên tố của A II.2.2.3. Đa thức II.2.2.3. 1. Lí thuyết Một số kiến thức cần nhớ: II.2.2.3. 1. 1. Định lý Bezout Số dư trong phép chia f(x) cho nhị thức x – a chính là f(a) Hệ quả: Nếu a là nghiệm của f(x) thì f(x) chia hết cho x – a II.2.2.3. 1. 2. Sơ đồ Hor nơ Ta có thể dùng sơ đồ Hor nơ để thìm kết quả của phép chia đa thức f(x) cho nhị thức x – a. Ví dụ: Thực hiện phép chia (x3 – 5x2 + 8x – 4) cho x – 2 bằng cách dùng sơ đồ Hor nơ. Bước 1: Đặt các hệ số của đa thức bị chia theo thứ tự vào các cột của dòng trên. 1 - 8 - a = 5 4 2 Bước 2: Trong 4 cột để trống ở dòng dưới, ba cột đầu cho ta các hệ số của đa thức thương, cột cuối cùng cho ta số dư. - Số thứ nhất của dòng dưới = số tương ứng ở dòng trên - Kể từ cột thứ hai, mỗi số ở dòng dưới được xác định bằng cách lấy a nhân với số cùng dòng liền trước rồi cộng với số cùng cột ở dòng trên 1 - 8 - a = 5 4 1 - 2 0 2 Vậy (x3 – 5x2 + 8x – 4) = (x – 2)(x2 – 3x + 2)3 + 0 3 2 * Nếu đa thức bị chia là a0x + a1x + a2x + a3 , đa thức chia là x – a, ta được 2 thương là b0x + b1x + b2 dư là r. Theo sơ đồ Hor nơ ta có: a a a a 0 1 2 3 a b0 b1 b2 r a 0 ab0 + ab1 + ab2 + VD 1: Tìm số dư trong các phép chia sau:a a a a) x3 – 9x2 – 35x + 7 cho x – 12. b) x3 – 3,256 x + 7,321 cho x – 1,1617. c) Tính a để x4 + 7x3 + 2x2 + 13x + a chia hết cho x + 6 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio x5 6,723 x 3 1,857 x 2 6, 458 x 4,319 d) x 2,318 e) Cho P(x) = 3x3 + 17x – 625 + Tính P(2 2 ) + Tính a để P(x) + a2 chia hết cho x + 3 VD2 : Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + f . Biết P(1) = 1 , P(2) = 4 , P(3) = 9 , P(4) = 16 , P(5) = 15 . Tính P(6) , P(7) , P(8) , P(9) Giải: Ta có P(1) = 1 = 12; P(2) = 4 = 22 ; P(3) = 9 = 32 ; P(4) = 16 = 42 ; P(5) = 25 = 52 Xét đa thức Q(x) = P(x) – x2. Dễ thấy Q(1) = Q(2) = Q(3) = Q(4) = Q(5) = 0. Suy ra 1; 2; 3; 4; 5 là nghiệm của đa thức Q(x). Vì hệ số của x5 bằng 1 nên Q(x) có dạng: Q(x) = (x – 1)(x – 2)(x – 3)(x – 4)(x – 5). Vậy ta có Q(6) = (6 – 1)(6 – 2)(6 – 3)(6 – 4)(6 – 5) = P(6) - 62 Hay P(6) = 5! + 62 = 156. Q(7) = (7 – 1)(7 – 2)(7 – 3)(7 – 4)(7 – 5) = P(7) – 72 Hay P(7) = 6! + 72 = 769 Bài 3: Cho Q(x) = x4 + mx3 + nx2 + px + q . Biết Q(1) = 5 , Q(2) = 7 , Q(3) = 9 , Q(4) = 11 . Tính các giá trị của Q(10) , Q(11) , Q(12) , Q(13) Hướng dẫn Q(1) = 5 = 2.1 + 3; Q(2) = 7 = 2.2 + 3; Q(3) = 9 = 2.3 + 3 ; Q(4) = 11 = 2.4 + 3 Xét đa thức Q1(x) = Q(x) – (2x + 3) Bài tập vận dụng 1. Cho P(x) = x5 + ax4 + bx3 + cx2 + dx + e . Biết P(1) = 3 , P(2) = 9 , P(3) = 19 , P(4) = 33 , P(5) = 51 . Tính P(6) , P(7) , P(8) , P(9) , P(10) , P(11) . 2.Cho P(x) = x4 + ax3 + bx2 + cx + d. Có P(1) = 0,5 ; P(2) = 2 ; P(3) = 4,5 ; P(4) = 8. Tính P(2002), P(2003) 3. Cho P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 5; P(2) = 14; P(3) = 29; P(4) = 50. Hãy tính P(5) , P(6) , P(7) , P(8) 4.Cho P(x) = x4 + ax3 + bx2 + cx + d. Biết P(1) = 0; P(2) = 4 ; P(3) = 18 ; P(4) = 48. Tính P(2007) 5.Cho P(x) = x5 + 2x4 – 3x3 + 4x2 – 5x + m . a) Tìm số dư trong phép chia P(x) cho x – 2,5 khi m = 2003 . b) Tìm giá trị của m để P(x) chia hết cho x – 2,5 c) P(x) có nghiệm x = 2 . Tìm m . 2 6. Cho P(x) = x4 2 x 3 5 x 7 . 3 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio a) Tìm biểu thức thương Q(x) khi chia P(x) cho x – 5. b) Tìm số dư của phép chia P(x) cho x – 5 chính xác đến 3 chữ số thập phân. 7. Tìm số dư trong phép chia đa thức x5 – 7,834x3 + 7,581x2 – 4,568x + 3,194 cho x – 2,652. Tìm hệ số của x2 trong đ thức thương của phép chia trên. 8.Khi chia đa thức 2x4 + 8x3 – 7x2 + 8x – 12 cho x – 2 ta được thương là đa thức Q(x) có bậc là 3. Hãy tìm hệ số của x2 trong Q(x) 9.Cho đa thức P(x) = 6x3 – 7x2 – 16x + m . a) Tìm m để P(x) chia hết cho 2x + 3 b) Với m tìm được ở câu a ) , hãy tìm số dư r khi chia P(x) cho 3x – 2 và phân tích P(x) thành tích của các thừa số bậc nhất c) Tìm m và n để Q(x) = 2x3 – 5x2 – 13x + n và P(x) cùng chia hết cho x – 2 . Với n tìm được ở trên , hãy phân tích Q(x) ra tích của các thừa số bậc nhất. II.2.2.4. Dãy số VD1: Cho dãy số với số hạng tổng quát được cho bởi công thức (13 3) n (13 3) n U n với n = 1 , 2 , 3 , . . . k , . . . 2 3 a) Tính U1 ,U 2 ,U 3 ,U 4 ,U 5 ,U 6 ,U 7 ,U 8 b) Lập công thức truy hồi tính U n 1 theo U n và U n 1 c) Lập quy trình ấn phím liên tục tính U n 1 theo U n và U n 1 Giải: a) Quy trình bấm phím (Máy fx-570MS) 1 SIHFT STO A ((13 3) alphaA-(13 3) alpha A)÷2 3) alpha : alpha A alpha = alpha A + 1= Ấn = liên tiếp ta được kết quả U1 = 1; U2 = 26 ; U3 =510; U4 =8944; U5 = 147884 U6 = 2360280; U7 = 36818536; U 8= 565475456. b) Giả sử Un+1 = a. Un + b. Un-1 + c Theo phần a ta có hệ 510 a .26 b .1 c a 26 8944 a .510 b .26 c b 166 147884 a .8944 b .510 c c 0 Un+1 = 26 Un -166 Un-1 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio c) 1 SIHFT STO A 26 SIHFT STO B alpha A alpha = 2 6alpha B- 1 1 6 alpha A alpha : alpha B alpha = 2 6alpha A - 1 1 6 alpha B Bài tập áp dụng 3 an a n 1.Cho dãy số a1 = 3; an + 1 = 3 . 1 an a) Lập quy trình bấm phím tính an + 1 b) Tính an với n = 2, 3, 4, , 10 3 1 xn 1 2.Cho dãy số x1 = ; x . 2 n 1 3 a) Hãy lập quy trình bấm phím tính xn + 1 b) Tính x30 ; x31 ; x32 4 xn 3.Cho dãy số xn 1 (n 1) 1 xn a) Lập quy trình bấm phím tính xn + 1 với x1 = 1 và tính x100. b) Lập quy trình bấm phím tính xn + 1 với x1 = -2 và tính x100. 2 4xn 5 4.Cho dãy số xn 1 2 (n 1) 1 xn a) Cho x1 = 0,25. Viết quy trình ấn phím liên tục để tính các giá trị của xn + 1 b) Tính x100 n n 5 7 5 7 5.Cho dãy số Un với n = 0; 1; 2; 3; 2 7 a) Tính 5 số hạng đầu tiên U0, U1, U2, U3, U4 b) Chứng minh rằng Un + 2 = 10Un + 1 – 18Un . c) Lập quy trình bấm phím liên tục tính Un + 2 theo Un + 1 và Un. n n 3 5 3 5 6. Cho dãy số U 2 với n = 1; 2; 3; n 2 2 a) Tính 5 số hạng đầu tiên U1, U2, U3, U4 , U5 b) Lập công thức truy hồi tính Un + 1 theo Un và Un – 1. c) Lập quy trình bấm phím liên tục tính Un + 1 trên máy Casio 7.Cho dãy số U n được tạo thành theo quy tắc sau: Mỗi số sau bằng tích của hai số trước cộng với 1, bắt đầu từ U0 = U1 = 1. a) Lập một quy trình tính un. b) Tính các giá trị của Un với n = 1; 2; 3; ; 9 c) Có hay không số hạng của dãy chia hết cho 4? Nếu có cho ví dụ. Nếu không hãy chứng minh. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 8.Cho dãy số U1 = 1, U2 = 2, Un + 1 = 3Un + Un – 1. (n 2) a) Hãy lập một quy trình tính Un + 1 bằng máy tính Casio b) Tính các giá trị của Un với n = 18, 19, 20 9.Cho dãy số U1 = 1, U2 = 1, Un + 1 = Un + Un – 1. (n 2) c) Hãy lập một quy trình tính Un + 1 bằng máy tính Casio d) Tính các giá trị của Un với n = 12, 48, 49, 50 10. Cho dãy số sắp thứ tự với U1 = 2, U2 = 20 và từ U3 trở đi được tính theo công thức Un + 1 = 2Un + Un + 1 (n 2). a) Tính giá trị của U3 , U4 , U5 , U6 , U7 , U8 b) Viết quy trình bấm phím liên tục tính Un c) Sử dụng quy trình trên tính giá trị của Un với n = 22; 23, 24, 25 II.2.2.5. Các bài toán kinh tế *Lãi suất đơn: Tiền lãi không được gộp vào vốn để tính. *Lãi suất kép: Tiền lãi gộp vào vốn để tính. II.2.2.5.1. Bài toán 1: Lãi suất đơn Một công nhân gởi vào ngân hàng a đồng, lãi suất m% trên 1 tháng theo hợp đồng tiền gốc và tiền lãi hàng tháng được thanh toán 1 lần ( tiền lãi hàng tháng không được cộng vào gốc cho tháng sau). Tính số tiền lãi sau n tháng. Giải: Tiền lãi mỗi tháng: a.m% Tiền lãi sau n tháng: n.a.m% II.2.2.5.2. Bài toán 2: Lãi suất kép * Bài toán 2.1: Lãi suất kép 1 Gửi số tiền a đồng, lãi suất m% trên tháng (lãi mỗi tháng cộng vào gốc tháng sau) tính số tiền có được sau n tháng. Giải: Đầu tháng 1 số tiền là: a Cuối tháng 1 số tiền là: a + a.m% = a(1+m%). Đầu tháng 2 số tiền là: a(1+m%)1 Cuối tháng 2 số tiền là: a(1+m%)1 + a(1+m%).m% = a(1+m%) (1+m%) = a(1+m%)2 Đầu tháng n số tiền là: a(1+m%)n Cuối tháng n số tiền là: a(1+m%)n. * Bài toán 2.2: Lãi suất kép 2 Hàng tháng 1 người gửi vào ngân hàng a đồng, lãi suất m% trên một tháng (tiền lãi mỗi tháng + gốc cho tháng sau). Tính số tiền gốc cộng lãi sau n tháng. Giải: Đầu tháng 1 số tiền là: a Cuối tháng 1 số tiền là: a + a.m%= a(1+m%). [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Đầu tháng 2 số tiền là: a(1+m%) +a = a[(1+m%)+1] Cuối tháng 2 số tiền là: a[(1+m%)+1]+ a[(1+m%)+1]m% = a[(1+m%)+1](1+m%) a (1 m %)1 (1 m %)1(1 m %) 1 m % 1 (1 m %)2 1 (1 m %) m% a (1 m )3 (1 m %) m% a (1 m %) (1 m )2 1 m% Cuối tháng n số tiền là: a n 1 (1 m %) (1 m %) m% a (1 m %) (1 m %)n 1 m% II.2.2.5.3. Ví dụ VD1: a) Dân số nước ta tính đến năm 2001 là 76,3 triệu người. Hỏi đến năm 2010 dân số nước ta là bao nhiêu nếu tỉ lệ tăng dân số trung bình mỗi năm là 1,2 ? b)Đến năm 2020, muốn cho dân số nước ta có khoảng 100 triệu người thì tỉ lệ tăng dân số trung bình mỗi năm là ? Giải : a) 76300000(1+1,2%)9=76300000(1+0,012)9= 84947216,06 Dân số nước ta năm 2010 là : 84947216 người c) 100000000=76300000(1+r)19 (1+r)19 =100000000 ÷ 76300000 100000000 1+r =19 76300000 100000000 r = 19 -1 76300000 = 0,014338521 Để thỏa mãn yêu cầu bài toán thì tỉ lệ tăng dân số trung bình mỗi năm là : 1,433852166% VD2: Một người gửi ngân hàng theo lãi suất kép. Muốn có 1 triệu sau 15 tháng thì phải gửi ngân hàng mỗi tháng một số tiền bằng nhau là bao nhiêu nếu lãi suất là 0,6%. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Giải : Số tiền sau n tháng được tính : a A (1 m %) (1 m %)n 1 m% a 1000000 (1 0,6%) (1 0.6%)15 1 0,6% 15 a 1000000 0,6% (1 0,6%) (1 0.6%) 1 a 63530 Bài tập áp dụng 1. Dân số của một quốc gia năm 2000 là 80 triệu dân, năm 2002 dân số nước đó là 81931520 người a) Tìm tỉ lệ sinh dân số của quốc gia trên. b) Dự đoán đến năm 2015 quốc gia đó có bao nhiêu người so với năm 2000. 2. Một người gửi tiết kiệm vào ngân hàng số tiền là 65 triệu đồng theo mức không kì hạn với lãi suất 0,4% một tháng. Nếu mỗi tháng người đó rút ra một số tiền như nhau vào ngày ngân hàng tính lãi thì hàng tháng người đó cần rút ra bao nhiêu tiền (làm tròn đến trăm đồng) để sau đúng 60 tháng số tiền trong sổ tiết kiệm vừa hết. 3. Dân số của một thành phố năm 2007 là 330.000 người. a) Hỏi năm học 2007-2008, dự báo có bao nhiêu học sinh lớp 1 đến trường, biết trong 10 năm trở lại đây tỉ lệ tăng dân số mỗi năm của thành phố là 1,5% và thành phố thực hiện tốt chủ trương 100% trẻ em đúng độ tuổi đều đến lớp 1 ? (Kết quả làm tròn đến hàng đơn vị) b) Nếu đến năm học 2015-2016, thành phố chỉ đáp ứng được 120 phòng học cho học sinh lớp 1, mỗi phòng dành cho 35 học sinh thì phải kiềm chế tỉ lệ tăng dân số mỗi năm là bao nhiêu, bắt đầu từ năm 2007 ? (Kết quả lấy với 2 chữ số ở phần thập phân) II.2.2.6. Căn thức Cách giải: - Tìm quy luật của biểu thức. - Chọn giá trị ban đầu để gán vào biến sao cho hợp lí. - Dựa vào quy luật viết quy trình bấm phím. VD1: Tính gần đúng đến 6 chữ số thập phân 6 5 4 3 2 1 A 7 2 3 4 5 6 7 Giải: Quy trình bấm phím trên máy fx570-MS [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 7 SIHFT STO B 0 SIHFT STO A 1 SIHFT STO C alpha A alpha = ( -1 ( alpha B - 1 ) alpha B alpha C alpha : alpha B alpha = alpha B - 1 alpha : alpha C alpha = alpha C + 1 KQ: 4,547219 VD2: Tìm 3 4 5 2 3 4 5 8 89 9 Giải: 9 SIHFT STO A 1 SIHFT STO B alpha B alpha = alpha Ax ( alpha A alpha B ) alpha : alpha A alpha = alpha A - 1 Ấn = lặp cho đến khi A = 2; KQ: 1,829 Bài tập vận dụng 1. Tìm gần đúng đến 4 chữ số thập phân 9 8 7 9 8 7 4 43 32 2 2. Tính giá trị biểu thức 2 3 3 4 4 5 5 8 8 9 9 3. Tính giá trị biểu thức 2 3 3 4 4 5 5 8 8 9 9 4. Tính giá trị biểu thức (gần đúng đến 6 chữ số thập phân) 12345678910 3 4 5 6 7 8 9 10 II.2.2.7. Phương trình II.2.2.7.1. Tìm nghiệm gần đúng của phương trình bậc cao II.2.2.7.1.1. Cách làm - Ghi nguyên vào màn hình phương trình cần tìm nghiệm. - Ấn phím Shift SOLVE (Máy hiện X?) - Ấn phím Shift SOLVE (Máy cho kết quả) II.2.2.7.1.2.Ví dụ Tìm nghiệm gần đúng của phương trình [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio x6- 15x -25 =0 Giải: Alpha X 6 - 1 5 Alpha X - 2 5 Alpha = 0 Shift SOLVE Shift SOLVE KQ: -1,317692529. Bài tập vận dụng 1. Tìm nghiệm gần đúng của phương trình x31- 11x =13 2. Tìm nghiệm gần đúng của phương trình x23- 19x -27 =0 3. Tìm nghiệm gần đúng của phương trình 12x6- 17x -35 =0 II.2.2.7.2. Phương trình có chứa phần nguyên II.2.2.7.2.1. Lí thuyết Định nghĩa: Kí hiệu x gọi là phần nguyên của x, trong đó x không vượt quá x: x x II.2.2.7.2.2. Ví dụ VD1: Giải phương trình x2 2005x 2004 0(1) (1) x2 2005n 2004 0(*) Giải: Đặt x n x2 2004 2005n Có: n x x n2 +1 + 2004 n = (2) Từ 2005 (2) n 0 n2 x (n+1) 2 n2 2004 x 2 2004 (n +1) 2 2004 n2 2004 x 2 2004 n 2 2n+2005 n2 2004 2005n n 2 2n + 2005 n2 2004 2005n 0 n 2 2005n + 2004 0 2 2 n 2n + 2005-2005n 0 n -2003n + 2005 0 1 n 2004 1 n 2004 n 1,001 n =1 n 1,001 n 2002;2003;2004 1 n 2004 n 2001,999 n 2001,999 Thay n 1;2002;2003;2004 vào (*) tính được: x1=1; x2=2002,999251; x3 =2003,4999688; x4=2004. VD2: Giải phương trình 3 3 3 3 3 1 2 3 (x 1) 855 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Giải: Ta có 3 n 1 khi n 1;2; ;7. 3 n 2 khi n 8;9; ;26. 3 n 3 khi n 27;28;29; ;63. 3 n 4 khi n 64;65;66; ;124. Từ đây dễ dàng chứng minh: 3 n k k3 n ( k 1) 3 Do đó ta có: 31 3 2 3 3 3 215 71192373614915855 3 3 3 3 3 1 2 3 (x 1) 855 x3 1 215 x 6 Bài tập áp dụng 1. Giải phương trình x2 2003 x 2002 0 2.Giải phương trình x2 2002 x 2001 0 3. Giải phương trình 3 3 3 3 3 1 2 3 (x 1) 215 II.2.2.8. Một số đề thi BỘ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI KHU VỰC GIẢI MÁY TÍNH TRÊN ĐỀ THI CHÍNH THỨC MÁY TÍNH NĂM 2007 Lớp 9 THCS Thời gian: 150 phút (Không kể thời gian giao đề) Ngày thi: 13/03/2007. Bài 1. (5 điểm) a) Tính giá trị của biểu thức lấy kết quả với 2 chữ số ở phần thập phân : N= 321930+ 291945+ 2171954+ 3041975 b) Tính kết quả đúng (không sai số) của các tích sau : [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio P = 13032006 x 13032007 Q = 3333355555 x 3333377777 c) Tính giá trị của biểu thức M với α = 25030', β = 57o30’ 2 2 2 2 2 2 M= 1+tg α 1+cotg β + 1-sin α 1-cos β . 1-sin 1-cos β (Kết quả lấy với 4 chữ số thập phân) Bài 2. (5 điểm)Một người gửi tiết kiệm 100 000 000 đồng (tiền Việt Nam) vào một ngân hàng theo mức kỳ hạn 6 tháng với lãi suất 0,65% một tháng. a) Hỏi sau 10 năm, người đó nhận được bao nhiêu tiền (cả vốn và lãi) ở ngân hàng. Biết rằng người đó không rút lãi ở tất cả các định kỳ trước đó. b) Nếu với số tiền trên, người đó gửi tiết kiệm theo mức kỳ hạn 3 tháng với lãi suất 0,63% một tháng thì sau 10 năm sẽ nhận được bao nhiêu tiền (cả vốn và lãi) ở ngân hàng. Biết rằng người đó không rút lãi ở tất cả các định kỳ trước đó. (Kết quả lấy theo các chữ số trên máy khi tính toán) Bài 3. (4 điểm) Giải phương trình (lấy kết quả với các chữ số tính được trên máy) 130307+140307 1+x =1+ 130307-140307 1+x Bài 4. (6 điểm) Giải phương trình (lấy kết quả với các chữ số tính được trên máy) : x+178408256-26614 x+1332007 + x+178381643-26612 x+1332007 1 Bài 5. (4 điểm)Xác định các hệ số a, b, c của đa thức P(x) = ax3 + bx2 + cx – 2007 để sao cho P(x) chia hết cho (x – 13) có số dư là 2 và chia cho (x – 14) có số dư là 3. (Kết quả lấy với 2 chữ số ở phần thập phân) Bài 6. (6 điểm) Xác định các hệ số a, b, c, d và tính giá trị của đa thức. Q(x) = x5 + ax4 – bx3 + cx2 + dx – 2007 Tại các giá trị của x = 1,15 ; 1,25 ; 1,35 ; 1,45. Biết rằng khi x nhận các giá trị lần lượt 1, 2, 3, 4 thì Q(x) có các giá trị tương ứng là 9, 21, 33, 45 (Kết quả lấy với 2 chữ số ở phần thập phân) Bài 7. (4 điểm)Tam giác ABC vuông tại A có cạnh AB = a = 2,75 cm, góc C = α = 37o25’. Từ A vẽ các đường cao AH, đường phân giác AD và đường trung tuyến AM. A a) Tính độ dài của AH, AD, AM. b) Tính diện tích tam giác ADM. (Kết quả lấy với 2 chữ số ở phần thập phân) B H D M C [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Bài 8. (6 điểm) 1. Cho tam giác ABC có ba góc nhọn. Chúng minh rằng tổng của bình phương cạnh thứ nhất và bình phương cạnh thứ hai bằng hai lần bình phương trung tuyến thuộc cạnh thứ ba cộng với nửa bình phương cạnh thứ ba. 2. Bài toán áp dụng : Tam giác ABC có cạnh AC = b = 3,85 cm ; AB = c = 3,25 cm và đường cao AH = h = 2,75cm. a) Tính các góc A, B, C và cạnh BC của tam giác. b) Tính độ dài của trung tuyến AM (M thuộc BC) c) Tính diện tích tam giác AHM. (góc tính đến phút ; độ dài và diện tích lấy kết quả với 2 chữ số phần thập phân. A B C H M Bài 9. (5 điểm)Cho dãy số với số hạng tổng quát được cho bởi công thức : n n 13+ 3 - 13- 3 U = với n = 1, 2, 3, , k, n 2 3 a) Tính U1, U2,U3,U4,U5,U6,U7,U8 b) Lập công thức truy hồi tính Un+1 theo Un và Un-1 c) Lập quy trình ấn phím liên tục tính Un+1 theo Un và Un-1 3 2 5 Bài 10. (5 điểm)Cho hai hàm số y= x+2 (1) và y = - x+5 (2) 5 5 3 a) Vẽ đồ thị của hai hàm số trên mặt phẳng tọa độ của Oxy b) Tìm tọa độ giao điểm A(xA, yA) của hai độ thị (kết quả dưới dạng phân số hoặc hỗn số) c) Tính các góc của tam giác ABC, trong đó B, C thứ tự là giao điểm của đồ thị hàm số (1) và độ thị của hàm số (2) với trục hoành (lấy nguyên kết quả trên máy) d) Viết phương trình đường thẳng là phân giác của góc BAC (hệ số góc lấy kết quả với hai chữ số ở phần thập phân) [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio KỲ THI TOÀN QUỐC GIẢI TOÁN TRÊN MÁY TÍNH CASIO NĂM 2008 MÔN: TOÁN 9 (THCS) THỜI GIAN: 150 PHÚT NGÀY THI: 14/03/2008 Câu 1: Tính giá trị của biểu thức 1) A = 1357912 246824 2 3sin15 25` 4cos12 12`.sin 42 20` cos36 15` 2) B = 2cos15 25` 3cos65 13`.sin15 12` cos31 33`.sin18 20` x 1 2 x 3) C = 1 :( ), với x = 143,08. x 1 x 1 x x x x 1 Câu 2: Cho P(x) = x4 ax 3 bx 2 cx d có P(0) = 12, P(2) = 0, P(4) = 60 1) Xác định các hệ số a, b, c, d của P(x) 2) Tính P(2006) 3) Tìm số dư trong phép chia đa thức P(x) cho (5x - 6) Câu 3: Tam giác ABC có AB = 31,48 (cm), BC = 25,43 (cm), AC = 16,25 (cm). Viết quy trình bấm phím liên tục trên máy tính cầm tay và tính chính xác đến 02 chữ số sau dấu phẩy giá trị diện tích tam giác, bán kính đường tròn ngoại tiếp và diện tích phần hình tròn nằm phía ngoài tam giác ABC. abc (Cho biết công thức tính diện tích tam giác: S = p( p a )( p b )( p c ), S ) 4R 3 1 3 5 1 5 Câu 4: Cho hai đường thẳng: ( d ) y x ():d y x 1 2 2 2 2 2 1) Tính góc tạo bởi các đường thẳng trên với trục ox (chính xác đến giây) 2) Tìm giao điểm của hai đường thẳng trên (tính tọa độ giao điểm chính xác đến 2 chữ số sau dấu phẩy) 3) Tính góc nhọn tạo bởi hai đường thẳng trên (chính xác đến giây) Câu 5: Từ điểm M nằm ở ngoài đường tròn (O;R) kẻ hai tiếp tuyến MA, MB với đường tròn. Cho biết MO = 2R và R = 4,23 (cm), tính chính xác đến 2 chữ số sau dấu phẩy: 1) Phần diện tích của tứ giác MAOB nằm phía ngoài đường tròn (O;R) 2) Diện tích phần chung của hình tròn đường kính MO và hình tròn (O;R) 2 an a n 1 1 Câu 6: Cho dãy số a0 1, an 1 với n = 0,1,2, an 1) Lập quy trình bấm phím tính an 1 trên máy tính cầm tay 2) Tính a1,,,,,, a 2 a 3 a 4 a 5 a 10 a 15 Câu 7: Cho dãy số UUUUU1 2; 2 3;n 1 3 n 2 n 1 3 với n 2 1) Lập quy trình bấm phím tính Un 1 trên máy tính cầm tay. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 2) Tính UUUUUU3,,,,, 4 5 10 15 19 Bài 8: Cho đường tròn đường kính AB = 2R, M và N là hai điểm nằm trên đường tròn sao cho: cung AM = cung MN = cung NB. Gọi H là hình chiếu của N trên AB và P là giao điểm của AM với HN. Cho R = 6,25 cm. 1) Tính: Góc (MBP) 2) Cho hình vẽ quay một vòng xung quanh trục BM. Tính diện tích xung quanh và thể tích hình do tam giác MBP tạo thành (chính xác đến 2 chữ số sau dấu phẩy) Bài 9: Dân số của một nước là 80 triệu người, mức tăng dân số là 1,1% mỗi năm. Tính dân số của nước đó sau n năm, áp dụng với n = 20. 3 2 13x 26102 x 2009 x 4030056 0 Bài 10: Giải hệ phương trình: 2 2 (x x 4017)( y y 1) 4017 3 KỲ THI TOÀN QUỐC GIẢI TOÁN TRÊN MÁY TÍNH CASIO NĂM 2009 MÔN: TOÁN 9 (THCS) THỜI GIAN: 150 PHÚT NGÀY THI: 13/03/2009 Câu 1: Tính giá trị của biểu thức 2 3 4 4) A = 1,25 15,37 3,75 2 3 4 1 3 2 5 2 4 7 5 7 3 3 5 3 5 2009 13,3 5) B = 3 2 5 3 7 2 3 5 4 7 3 2 2 3 2 3 6) C = (1 sin 17 34`) (1 tg 25 30`) (1 cos 50 13`) (1 cos3 35 25`) 2 (1 cotg 2 25 30`) 3 (1 sin 2 50 13`) 3 Câu 2: Hình chữ nhật ABCD có độ dài các cạnh AB = m, BC = n. Từ A kẻ AH vuông góc với đường chéo BD a) Tính diện tích tam giác ABH theo m, n b) Cho biết m = 3,15 cm và n = 2,43 cm. Tính ( chính xác đến 4 chữ số thập phân) diện tích tam giác ABH Câu 3: Đa thức Px() x6 ax 5 bx 4 cx 3 dx 2 ex f có giá trị là 3; 0; 3; 12; 27; 48 khi x lần lượt nhận giác trị là 1; 2; 3; 4; 5; 6 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio a) Xác định các hệ số a, b, c, d, e, f của P(x) b) Tính giá trị của P(x) với x = 11; 12; 13; 14; 15; 16; 17; 18; 19; 20 Câu 4: 4) Hình chóp tứ giác đều O. ABCD có độ dài cạnh đáy BC a , độ dài cạnh bên OA l a) Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình chóp O. ABCD theo a và l . b) Tính ( chính xác đến 2 chữ số thập phân) diện tích xung quanh và thể tích của hình chóp O. ABCD khi cho biết a 5,75 cm , l 6,15 cm 5) Người ta cắt hình chóp O. ABCD cho trong câu 1 bằng mặt phẳng song song với đáy ABCD sao cho diện tích xung quanh của hình chóp O. MNPQ được cắt ra bằng diện tích xung quanh của hình chóp cụt đều MNPQ. ABCD được cắt ra. Tính thể tích hình chóp cụt được cắt ra ( chính xác đến 2 chữ số thập phân ) Câu 5: 1. Một chiếc thuyền khởi hành từ một bến sông A. Sau 5 giờ 10 phút, một chiếc canô chạy từ A đuổi theo và gặp thuyền đó cách bến A 20,5 km. Hỏi vận tốc của thuyền, biết rằng canô chạy nhanh hơn thuyền 12,5km / h . ( Kết quả chính xác với 2 chữ số thập phân) 2. Lức 8 giờ sáng, một ô tô đi từ A đến B, đường dài 157 km. Đi được 102 km thì xe bị hỏng máy phải dừng lại sửa chữa mất 12 phút rồi đi tiếp đến B với vận tốc ít hơn lúc đầu là 10,5km / h . Hỏi ô tô bị hỏng lúc mấy giờ, biết rằng ô tô đến B lúc 11 giờ 30 phút. ( Kết quả thời gian làm tròn đến phút) n n 1 2 1 2 Câu 6: Cho dãy số U với n =1,2, ,k, . n 2 2 1. Chứng minh rằng: UUUn 1 2 n n 1 với n 1 2. Lập quy trình bấm phím liên tục tính Un 1 theo Un và Un 1 với UU1 1, 2 2 3. Tính các giá trị từ U11 đến U20 Câu 7: Hình thang vuông ABCD( AB // CD ) có góc nhọn BCD , độ dài các cạnh BC m, CD n 3) Tính diện tích, chu vi và các đường chéo của hình thang ABCD theo m, n và . 4) Tính ( chính xác đến 4 chữ số thập phân ) diện tích, chu vi và các đường chéo của hình thang ABCD với m 4,25 cm , n 7,56 cm , 5430o , Bài 8: [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 1. Số chính phương P có dạng P 17712 ab 81. Tìm các chữ số a, b biết rằng a b 13 2. Số chính phương Q có dạng Q 15 cd 26849 . Tìm các chữ số c, d biết rằng c2 d 2 58 3. Số chính phương M có dạng M 1 mn 399025 chia hết cho 9. Tìm các chữ số m, n 2 3 13xn Bài 9: Cho dãy số xác định bởi công thức : xn 1 2 với x1 0,09 , n = 1 xn 1,2,3, , k, 3) Viết quy trình bấm phím liên tục tính xn 1 theo xn . 4) Tính x2,,,, x 3 x 4 x 5 x 6 ( với đủ 10 chữ số trên màn hình ) 5) Tính x100, x 200 ( với đủ 10 chữ số trên màn hình ) Bài 10: Cho tam giác ABC vuông tại A . Từ A kẻ AH vuông góc với BC ( H thuộc BC ) Tính độ dài cạnh AB ( chính xác đến 2 chữ số thập phân), biết rằng diện tích tam giác AHC là S 4,25 cm2 , độ dài cạnh AC là m 5,75 cm . UBND TỈNH THỪA THIÊN HUẾ KỲ THI CHỌN HOC SINH GIỎI TỈNH SỞ GIÁO DỤC VÀ ĐÀO TẠO LỚP 8 THCS NĂM HỌC 2004 - 2005 Môn : MÁY TÍNH BỎ TÚI ĐỀ CHÍNH THỨC Thời gian: 120 phút (không kể thời gian giao đề) Bài 1: (2 điểm): Tính kết quả đúng của các tích sau: M = 3344355664 3333377777 N = 1234563. Bài 2: (2 điểm): Tìm giá trị của x, y viết dưới dạng phân số (hoặc hỗn số) từ các phương trình sau: 2x x 5 4 2 3 1 6 4 5 3 8 5 7 5 7 9 8 9 y y 2 1 1 1 3 1 1 4 5 6 7 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Bài 3: (2 điểm): Cho ba số: A = 1193984; B = 157993 và C = 38743. a) Tìm ước số chung lớn nhất của ba số A, B, C. b) Tìm bội số chung nhỏ nhất của ba số A, B, C với kết quả đúng chính xác. Bài 4: (2 điểm): a) Bạn An gửi tiết kiệm một số tiền ban đầu là 1000000 đồng với lãi suất 0,58%/tháng (không kỳ hạn). Hỏi bạn An phải gửi bao nhiêu tháng thì được cả vốn lẫn lãi bằng hoặc vượt quá 1300000 đồng ? b) Với cùng số tiền ban đầu và cùng số tháng đó, nếu bạn An gửi tiết kiệm có kỳ hạn 3 tháng với lãi suất 0,68%/tháng, thì bạn An sẽ nhận được số tiền cả vốn lẫn lãi là bao nhiêu ? Biết rằng trong các tháng của kỳ hạn, chỉ cộng thêm lãi chứ không cộng vốn và lãi tháng trước để tình lãi tháng sau. Hết một kỳ hạn, lãi sẽ được cộng vào vốn để tính lãi trong kỳ hạn tiếp theo (nếu còn gửi tiếp), nếu chưa đến kỳ hạn mà rút tiền thì số tháng dư so với kỳ hạn sẽ được tính theo lãi suất không kỳ hạn. Bài 5: (2 điểm): Cho dãy số sắp thứ tự u1, u 2, u 3 , , un , u n 1 , , biết u5 588 , u 6 1084 và un 1 3 u n 2 u n 1 . Tính u1,, u 2 u 25 . Bài 6: (2 điểm): Cho dãy số sắp thứ tự u1, u 2, u 3 , , un , u n 1 , biết: u1 1, u 2 2, u 3 3; un u n 1 2 u n 2 3 u n 3 (4) n a) Tính u4,,,. u 5 u 6 u 7 b) Viết qui trình bấm phím liên tục để tính giá trị của un với n 4 . c) Sử dụng qui trình trên, tính giá trị của u20,,,. u 22 u 25 u 28 Bài 7: (2 điểm): Biết rằng ngày 01/01/1992 là ngày Thứ Tư (Wednesday) trong tuần. Cho biết ngày 01/01/2055 là ngày thứ mấy trong tuần ? (Cho biết năm 2000 là năm nhuận). Bài 8: (2 điểm): Để đo chiều cao từ mặt đất đến đỉnh cột cờ của Kỳ đài trước Ngọ Môn (Đại Nội - Huế), người ta cắm 2 cọc bằng nhau MA và NB cao 1,5 m (so với mặt đất) song song, cách nhau 10 m và thẳng hàng so với tim của cột cờ. Đặt giác kế đứng tại A và tại B để nhắm đến đỉnh cột cờ, người ta đo được các góc lần lượt là 510 49'12" và [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 45039' so với phương song song với mặt đất. Hãy tính gần đúng chiều cao đó. Bài 9: (2 điểm): Cho tam giác ABC có các độ dài của các cạnh AB = 4,71 cm, BC = 6,26 cm và AC = 7,62 cm. a) Hãy tính độ dài của đường cao BH, đường trung tuyến BM và đoạn phân giác trong BD của góc B ( M và D thuộc AC). b) Tính gần đúng diện tích tam giác BHD. Bài 10: (2 điểm): Tìm số nguyên tự nhiên nhỏ nhất n sao cho 28 2 11 2n là một số chính phương. II.3. Chương III: HIỆU QUẢ CỦA ĐỀ TÀI Sau một thời gian dài áp dụng giải pháp, qua thực tế giảng dạy, tôi thấy giải pháp bước đầu đã mang lại hiệu qủa rất khả quan. Học sinh yêu thích môn học này hơn, đồng thời kích thích trí tò mò tìm hiểu khoa học của học sinh, các em tích cực chủ động trong việc lĩnh hội kiến thức các môn học nói chung và môn Toán nói riêng. Chất lượng bộ môn được nâng cao, thể hiện cụ thể ở kết quả học tập của các em Kiểm tra Số Yếu TB Khá+giỏi Đạt giải Đạt giải HS cấp Huyện cấp Tỉnh Trước khi ôn 9 2 5 2 Sau khi ôn 9 0 2 7 7 1 Trong quá trình thử nghiệm, tôi đã thu được một số thành công bước đầu: *Về phía học sinh: Qua việc giới thiệu cho học sinh hệ thống các dạng bài tập về máy tính bỏ túi Casio từ dễ đến khó, tôi thấy đã phát huy được tính tích cực, tư duy sang tạo, sự say mê môn học của học sinh, giúp học sinh hình thành phương pháp và cách làm việc với khoa học Toán học. Đặc biệt các em xác định được dạng và sử dụng phương pháp hợp lí để giải bài toán một cách chủ động. *Về phía giáo viên: Tôi thấy trình độ chuyên môn được nâng cao hơn, đặc biệt phù hợp với quá trình đổi mới phương pháp dạy học của ngành đề ra. Đồng thời hình thành ở giáo viên phương pháp làm việc khoa học. Hơn thế đã phát huy được sự tích cực chủ động của người học, hình thành ở học sinh những kĩ năng, kĩ xảo trong giải toán. III.KẾT LUẬN VÀ ĐỀ XUẤT III.1. Kết luận Khi hướng dẫn học sinh giải toán trên máy tính bỏ túi (phần Đại số)theo hệ thống bài tập như trên tôi thấy học sinh hiểu, vận dụng rất tốt, đặc biệt giúp các em nhớ lâu, phân biệt được dạng bài tập. Từ đó giúp các em say xưa với bộ môn, tích cực sáng tạo khi giải Toán, là cơ sở để tôi phát hiện và bồi dưỡng cho học sinh khá giỏi. [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio Đối với giáo viên để luyện tốt cho học sinh sử dụng máy tính bỏ túi Casio vào giải toán cần: - Phải nắm thật chắc chương trình và đối tượng học sinh để chuẩn bị bài giảng tốt. - Phải biết chọn lọc nội dung,phương pháp tập chung vào điểm mấu chốt, chọn kiến thức, kĩ năng cơ bản nào hay ứng dụng nhất để giảng tốt. - Phải giảng chắc đến đâu, luyện chắc đến đấy. Tránh giảng qua loa đại khái để chạy theo số lượng bài tập - Suốt quá trình luyện giảng phải cho học sinh động não suy nghĩ tại sao, làm thế nào? Tại sao chọn cách giải đó??? Thì mới đạt kết quả. III.2. Đề xuất Đề nghị PGD, Sở GD thường xuyên mở lớp tập huấn để giáo viên có điều kiện giao lưu, học hỏi kinh nghiệm dạy của đồng nghiệp. IV. TÀI LIỆU THAM KHẢO-PHỤ LỤC IV.1. Tài liệu tham khảo 1. Sách giáo khoa Toán 6; Toán 7; Toán 8; Toán 9. 2. Sách giáo viên Toán 6; Toán 7; Toán 8; Toán 9. 3. Bài tập nâng cao và một số chuyên đề Toán 6 – Bùi Văn Tuyên. 4. Bài tập nâng cao và một số chuyên đề Toán 7 – Bùi Văn Tuyên. 5. Bài tập nâng cao và một số chuyên đề Toán 8 – Bùi Văn Tuyên. 6. Bài tập nâng cao và một số chuyên đề Toán 9 – Bùi Văn Tuyên. 7. Tuyển tập 250 bài toán bồi dưỡng HS giỏi Toán cấp 2 (phần Đại số) – - Võ Đại Mau. 8. Giải toán trên máy tính Casio fx-570MS lớp 6-7-8-9 – Lê Hồng Đức. 9. Hướng dẫn sử dụng và giải toán trên máy tính Casio fx 500 MS – TS Nguyễn Văn Trang. 10. Hướng dẫn sử dụng máy tính Casio fx 570 MS – TS Nguyễn Văn Trang. 11. Hướng dẫn sử dụng và giải toán trên máy tính Vinacal Vn-500 MS. 12. Hướng dẫn sử dụng và giải toán trên máy tính Vinacal Vn-570 MS. 13. Các đề thi học sinh giỏi Giải toán trên máy tính Casio 1996 – 2004 – Tạ Duy Phượng – Nguyễn Thế Thạch. 14. Tài liệu tải trên mạng thuộc thư viện violet. IV.2. Phụ lục STT Nội dung Trang 1 I.Phần mở đầu 1 2 I.1. Lí do chọn đề tài 1 [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio 3 I.2. Mục đích nghiên cứu 1 4 I.3. Thời gian – Địa điểm 1 5 I.4. Đóng góp mới về mặt lí luận, về mặt thực tiễn 1 6 II. Phần nội dung 2 7 II.1. Chương I: Tổng quan 2 8 II.1.1. Cơ sở lí luận 2 9 II.1.2. Đặc điểm tình hình 2 10 II.2. Chương II: Nội dung vấn đề nghiên cứu 3 11 II.2.1. Sơ lược về cách sử dụng máy 3 12 II.2.2. Lí thuyết và các dạng bài tập cơ bản 7 13 II.2.2.1. Các phép toán trong tập hợp số tự nhiên 7 14 II.2.2.2. Liên phân số - phân số - số thập phân 13 15 II.2.2.3. Đa thức 19 16 II.2.2.4. Dãy số 21 17 II.2.2.5. Các bài toán kinh tế 23 18 II.2.2.6. Căn thức 26 19 II.2.2.7. Phương trình 27 20 II.2.2.8. Một số đề thi 29 21 II.3. Chương III: Hiệu quả của đề tài 37 22 III. Kết luận và đề xuất 37 Đông Triều, ngày 19 tháng 5 năm 2010 Người viết Đào Thị Mai Phương [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio V. NHẬN XÉT CỦA HĐKH CẤP TRƯỜNG, PHÒNG GD-ĐT, SỞ GD-ĐT [Type text]
- Giúp HS tiếp cận, luyện thi học sinh giỏi giải toán trên máy tính bỏ túi Casio [Type text]