Giáo trình Hình thành giai đoạn tăng lãi suất theo tỷ suất lợi tức (Phần 2)

pdf 10 trang hapham 2260
Bạn đang xem tài liệu "Giáo trình Hình thành giai đoạn tăng lãi suất theo tỷ suất lợi tức (Phần 2)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_hinh_thanh_giai_doan_tang_lai_suat_theo_ty_suat_l.pdf

Nội dung text: Giáo trình Hình thành giai đoạn tăng lãi suất theo tỷ suất lợi tức (Phần 2)

  1. Lãi suất hiệu dụng của ink = i kỳ thứ n Trong đó : t 0 i : lãi suất k : vốn gốc Riêng đối với hàm tích luỹ và lợi tức thu được của lỳ n, ta có bảng sau : Giá trị tích luỹ đến Tổng lợi tức đạt được đến cuối kỳ t cuối kỳ t t = 1 A(t)đ = A(t)k Itđ =Itk t A(t)k Itđ >Itk t > 1 A(t)đ < A(t)k Itđ <Itk Đồ thị:
  2. Ở đây, ta giả định mặc nhiên là i>0. Nếu cho vay (đầu tư) trong thời gian < 1 kỳ, nên tính theo phương pháp lãi đơn. Ngược lại, nếu thời gian cho vay (đầu tư) 1, nên tính theo phương pháp lãi kép. Ví dụ: Một người đầu tư vốn gốc ban đầu là 200 triệu đồng với lãi suất là 9%/năm. Tính giá trị tích luỹ người đó đạt được theo hai phương pháp lãi đơn và lãi kép nếu thời gian đầu tư là: 1. 1 năm. 2. 9 tháng. 3. 5 năm. Giải : k = 200.000.000 đồng. i = 9%/năm. Ta có bảng sau: Giá trị tích luỹ đạt được theo lãi Giá trị tích luỹ đạt được theo lãi Thời gian đơn kép đầu tư t A(t)đ = k(1+ i.t) A(t)k = k(1+ i)
  3. 1 t = 1 năm A(t) đ = 200(1+9%) = 218 A(t)k = 200(1+9%) = 218 triệu triệu Itđ = 18 Itk = 18 triệu triệu 9/12 t = 9 tháng A(t)đ = 200(1+9%.9/12) = 213,5 A(t)k= 200(1+9%) = 213,353 triệu triệu Itđ = 13,5 Itk = 13,353 triệu triệu 5 t = 5 năm A(t)đ = 200(1+5.9%) = 290 A(t)k = 200(1+9%) = 307,725 triệu triệu Itđ = 90 Itk = 107,725 triệu triệu Ghi chú : Trong một số trường hợp, hàm tích luỹ kết hợp cả hai tình huống : đối với phần nguyên của t, ta sử dụng hàm tích luỹ của lãi kép, và phần lẻ của t, ta sử dụng hàm tích luỹ vốn của lãi đơn. a(t) = (1+i)[t].[1+(t – [t]).i] (12) A(t) = k.a(t) (13) Trong đó : [t] là phần nguyên của t. Tiết 4, 5, 6 1.4. Vốn hoá (capitalization) và hiện tại hoá (actualisation) 1.4.1. Vốn hoá (capitalization) Ví dụ : Ông A đầu tư một khoản tiền ban đầu là 3.000.000 đồng. Trong 3 năm đầu tiên, khoản đầu tư này mang lại cho ông một lãi suất kép là 7%/năm. Cuối năm thứ 3, ông A lại tái đầu tư toàn bộ giá trị tích luỹ đạt được trong vòng 4 năm,
  4. mỗi năm đạt lãi suất kép là 8%. Hỏi giá trị tích lũy ông A có được vào cuối năm thứ 7 là bao nhiêu ? Giải : 3 3 A(3) = k.(1+i1) = 3.000.000 x (1+7%) = 3.675.129 VND 4 4 A(7) = A(3).(1+i2) = 3.675.129 x (1+8%) = 4.999.972 VND Đây là trường hợp vốn hoá, nghĩa là xác định giá trị của vốn sau một khoảng thời gian. 1.4.2. Hiện tại hoá (actualization) Bây giờ, chúng ta sẽ giới thiệu khái niệm ngược lại, khái niệm hiện tại hoá, nghĩa là xác định giá trị hiện tại của một khoản vốn trong tuơng lai. Nói cách khác, hiện tại hoá là việc xác định khoản vốn gốc cần đầu tư để đến một thời điểm t, sẽ nhận được giá trị tích luỹ mong muốn. Giả sử ta mong muốn đạt được giá trị tích luỹ là 1VND sau một kỳ đầu tư với lãi suất là i. Khoản vốn phải bỏ ra đầu tư ban đầu sẽ là : Để có giá trị tích luỹ là 1VND sau t kỳ, vốn gốc đầu tư ban đầu phải là : (14) Trong đó : a(t) là hàm vốn hoá a(t)-1 là hàm hiện tại hoá Vốn gốc đầu tư ban đầu để đạt giá trị tích luỹ là k sau k kỳ là : A(t)-1 gọi là giá trị hiện tại của A(t). Như vậy : Nếu dùng phương pháp lãi đơn : (15)
  5. Nếu dùng phương pháp lãi kép : (16) Ví dụ: Một người gửi vào ngân hàng một khoản tiền theo lãi kép với lãi suất 7,8%/năm. Sau 3 năm 9 tháng thu được 50 triệu đồng. Tính giá trị của số tiền gửi ban đầu. Giải: i = 7,8%/năm. t = 3 năm 9 tháng = 3,75. A(t) = 50.000.000 đồng. 1.5. Lãi suất chiết khấu hiệu dụng (effective rate of discount) 1.5.1. Lãi suất chiết khấu hiệu dụng Lãi suất chiết khấu hiệu dụng của kỳ thứ nhất, ký hiệu là d1 là tỷ số giữa lợi tức thu được trong kỳ này và giá trị tích luỹ cuối kỳ thứ nhất. (17) Có thể viết công thức tính d1 theo hàm vốn hoá như sau : (18) -1 hay a(1) = (1-d1) vì a(0) = 1 Lãi suất chiết khấu hiệu dụng của kỳ n, dn, là :
  6. (19) Lãi suất chiết khấu hiệu dụng được sử dụng trong các giao dịch tài chính có lợi tức được trả trước. Ví dụ : Ông A cho ông B vay một khoản tiền là 10.000.000 VND trong vòng 1 năm, trả lãi trước, với lãi suất chiết khấu hiệu dụng là 7%. Khoản lãi ông B phải trả : 10.000.000 x 7% = 700.000 VND Ông A đưa ông B : 10.000.000 – 700.000 = 9.300.000 VND và nhận lại số tiền 10.000.000 VND vào cuối năm. Ta có : A(n - 1) = (1 – dn).A(n) A(n - 2) = (1 – dn-1).A(n - 1) = (1 – dn-1).(1 – dn).A(n) A(0) = (1 – d1) (1 – dn-1).(1 – dn).A(n) Từ công thức này, ta có thể tính vốn gốc A(0) hoặc giá trị tích luỹ A(n) theo lãi suất chiết khấu hiệu dụng. 1.5.2. Mối quan hệ giữa lãi suất hiệu dụng và lãi suất chiết khấu hiệu dụng của 1 kỳ Giả sử ta cho vay 1VND với lãi suất chiết khấu hiệu dụng là d trong một kỳ. Như vậy, ta sẽ đưa cho người vay một khoản tiền là (1 – d) VND và nhận được 1 VND vào cuối kỳ. Khoản lãi người vay phải trả là d VND, vốn gốc cho vay ban đầu là 1 – d. Do đó, lãi suất hiệu dụng tương ứng với lãi suất chiết khấu hiệu dụng sẽ là: (20) Ta cũng sẽ có: (21)
  7. Ví dụ: 1. a. Nếu lãi suất chiết khấu hiệu dụng là 7%, lãi suất hiệu dụng tương ứng: b. Nếu lãi suất hiệu dụng là 8%, lãi suất chiết khấu hiệu dụng tương ứng: 2. Ông A muốn mua một căn hộ với giá là 3 tỷ VND. Người bán đề nghị 2 lựa chọn: hoặc ông trả 3 tỷ sau 1 năm hoặc ông trả tiền ngay và được hưởng chiết khấu là 15%. Nếu lãi suất hiệu dụng trên thị trường tài chính hiện nay là 12%/năm, phương thức thanh toán nào sẽ có lợi cho ông A hơn và lãi suất thị trường là bao nhiêu để hai sự lựa chọn này giống nhau? Giải: Nếu lãi suất hiệu dụng trên thị trường là 12%/năm, giá trị của khoản tiền 3 tỷ VND trả sau 1 năm vào thời điểm bán là: Nói cách khác, nếu ta gửi vào ngân hàng 2.678.571.429 VND với lãi suất là 12% thì sau một năm, ông A sẽ có đủ 3 tỷ VND để trả tiền cho người bán. Do đó, giá trị của căn hộ vào thời điểm mua theo lựa chọn đầu tiên là 2.678.571.429 VND. Giá trị của căn hộ theo lựa chọn thứ hai là: 3.000.000.000 x (1 – 15%) = 2.500.000.000 VND So sánh hai phương thức thanh toán, ta thấy lựa chọn thứ hai có lợi hơn cho ông A. Gọi i(%/năm) là lãi suất hiệu dụng trên thị trường tài chính để hai sự lựa chọn này như nhau. Khi đó, giá trị của căn hộ tại thời điểm mua theo hai phương thức thanh toán là như nhau:
  8. i = 17,65% Ở đây, ta có thể tính i theo công thức: Ta vừa xem xét chiết khấu cho 1 kỳ. Trong trường hợp nhiều kỳ, cũng giống như lợi tức, có 2 tình huống xảy ra: chiết khấu đơn và chiết khấu kép. 1.5.3. Chiết khấu đơn Đối với chiết khấu đơn, ta sẽ giả thiết là các khoản tiền chiết khấu của mỗi kỳ đều bằng nhau và bằng d. Như vậy, vốn gốc ban đầu phải là (1 – dt) VND để đạt được giá trị tích luỹ là 1 VND sau t kỳ . Ta sẽ có: a(t)-1 = (1 – d.t) với 0 t < d-1 (22) với 0 t < d-1 với 0 t < d-1 (23) i : lãi suất đơn tương ứng. d : lãi suất chiết khấu hiệu dụng đơn 1.5.4. Chiết khấu kép Đối với chiết khấu kép, ta giả thiết lãi suất chiết khấu hiệu dụng của các kỳ không đổi là d. Để có giá trị tích luỹ là 1VND sau 1 kỳ, vốn gốc ban đầu là (1 – d) VND. Để có giá trị tích luỹ là 1VND sau 2 kỳ, giá trị tích luỹ đến cuối kỳ thứ nhất phải là (1 – d) VND. Và để có giá trị tích luỹ là (1 – d) VND ở cuối kỳ 1, vốn gốc đầu kỳ 1 phải là (1 – d).(1 – d) = (1 – d)². Như vậy, muốn đạt giá trị tích luỹ là 1 VND sau 2 kỳ, vốn gốc ban đầu là (1 - d)². Tương tự, muốn đạt giá trị tích luỹ là 1 VND sau t kỳ, vốn gốc ban đầu là (1 - d)t. Ta có: a(t)-1 = (1 - d)t với 0 t (24)
  9. = (1 - d)t với 0 t với 0 t (25) t ở đây có thể không phải là một số nguyên. Ví dụ : Ông B hứa trả ông A khoản tiền là 40.000.000 sau 3 năm. Nếu lãi suất chiết khấu hiệu dụng kép là 6%/năm, số tiền mà ông A đưa cho ông B là bao nhiêu ? Số tiền đó sẽ là bao nhiêu nếu đây là lãi suất hiệu dụng đơn. Giải : Nếu là lãi suất hiệu dụng kép : = (1 - 6%) 3 x 40.000.000 = 33.223.360 VND Nếu là lãi suất hiệu dụng đơn : = (1 - 6%.3) x 40.000.000 = 32.800.000 VND 1.6. Lãi suất danh nghĩa Cho đến bây giờ, chúng ta chỉ xem xét các tình huống trong đó lợi tức được trả một lần trong kỳ (hay còn gọi là vốn hóa một lần trong kỳ). Lãi suất được dùng là lãi suất hiệu dụng. Ngoài ra, còn có một khái niệm khác là lãi suất danh nghĩa. Đối với trường hợp này, lợi tức sẽ được vốn hoá nhiều lần trong một kỳ. Ví dụ, lợi tức trả mỗi tháng, mỗi qúy hoặc mỗi nửa năm. Nếu lợi tức được trả m lần trong một kỳ, m > 1, và lãi suất của mỗi kỳ nhỏ trong m kỳ nhỏ này là i(m)/m thì lãi suất danh nghĩa ở đây là i(m) (%/kỳ). Lợi tức được vốn hoá vào cuối mỗi kỳ nhỏ m. Ký hiệu i(m) có nghĩa là lãi suất danh nghĩa trong đó lợi tức được vốn hoá m lần trong 1 kỳ. Ví dụ :
  10. Nếu lãi suất i(12) = 9%, lợi tức sẽ được vốn hoá 12 lần/năm, một tháng một lần và lãi suất sử dụng cho mỗi tháng sẽ là : . Nếu một khoản vốn gốc ban đầu là 10.000.000 được đầu tư với lãi suất danh nghĩa là 9%, vốn hoá hàng tháng, nghĩa là i(12) = 9%. Giá trị tích luỹ của khoản vốn này vào cuối năm thứ 1 sẽ là : Lúc này, lãi suất hiệu dụng là sẽ là : Một cách tổng quát, lãi suất hiệu dụng i tương đương với lãi suất i(m) sẽ xác định được từ giá trị tích luỹ sau một kỳ từ khoản vốn ban đầu là 1VND theo lãi suất i và i(m). (26) Từ phương trình này ta có thể tính được lãi suất hiệu dụng i tương đương với lãi suất danh nghĩa i(m) và ngược lại : (27) (28) Ví dụ : Một người đầu tư một khoản tiền ban đầu là 7.000.000 VND với lãi suất danh nghĩa là 9%, vốn hoá mỗi quý (3 tháng/lần). Sau 30 tháng người đó thu được giá trị tích luỹ là bao nhiêu ? Giải : i(4) = 9%